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PREFACE

This document reports a study carried out by Aerophysics
Research Corporation during the period from April to August,
1369, under Contract NAS 2-5383. The National Aeronautics and
Space Administration Technical Monitor was Mr. Richard H.
Petersen, Mission Analysis Division, Moffett Field, California.
Mr. D. S. Hague functioned as Aerophysics Research Corporation's
Project Leader for the study.

The trajectory program and basic steepest-descent optimi-
zation program which applies to multi-staged vehicles whose
stage points occur at fixed times were originally developed
under U.S. Air Force Funding Contracts AF 33(616)-6848 and AF
33(657)-8829. Mr. B. R. Benson of the Air Force Flight Dynamics
Laboratory sponsored these developments in the period from
1959 to 1964. The optimization program was further extended
under NASA Contract NAS 2-3691. Mr. Hubcrt Drake of the Mission
Analysis Division, Moffett Field, California monitored the study.

Major extensions to program capability were undertaken in
the period from 1964 to 1965 by the author while at McDonnell-
Douglas Corporation, St. Louis. These extensions included
solution of problems involving simulianeocus determination of
both optimal stage points and time varying control histories,
the multiple-arc problem, and the extension to two-vehicle
problems when the maneuvers or one vehicle are pre-determined,
the "maneuvering target" problem. The program delivered to
Ames Research Center under the prese-t study does not include
the optimal staging and maneuveri:ic .arget capability. However,
in the interest of information diss-:unination, the present report
collects in one source the analytic approach employed in the
point mass trajectory equations, thL: basic optimization formu-
lation, the multiple-arc extension, and the maneuvering target
extension.

Pagt contributors to the progrza development include
Mr. Robert L. Mobley, now with the Faind Corporation, who pro-
grammed the optimization formulation and

Mr. Robert C. Browne, McDonnell-Douglas Corp., St. Louis
Mr. R. V. Brulle, McDonnell-Dcuylas Corp., St. Louis

Mr. A. E. Combs, McDonnell-Douglas Corp., St. Louis

Mr. K. N, Easley, now with Aerospace Corporation

Mr. Ken Geib, McDonnell-Dcuglas Corp., St. Louis

Mr. G. D. Griffin, now with A=rospace Corporation

Mr. G. G. Grose, McDonnell-Douiglas Corp., St. Louis

or. H. L. Rozendaal, now with Lockheed Electronics, Houston
Mr. F. W. Seubert, McDonnell-l'ougias Corp., St. Louis

Mr. N. E. Usher, McDonnell-Dougias Corp , St. Louis

ii



Mrs. Jane Yonke of Aerophysics Research Corporation prepared
the present report.

The steepest-descent atmospheric trajectory optimization
programs described in this report are currently being extended
to the general two-vehicle trajectory optimization problem. In
the general case both vehicles exert time varying control with
either cooperative or conflicting objectives. This work will
be reported separately at a later date. Inquiries concerning
the development should be directed to Mr. B. R. Benson of the
Air Force Flight Dynamics Laboratory.
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ATMOSPIERIC AND NE4LR PLANET TRAJECTORY OPTIMIZATION
BY THE VARIATIONAL STEEPEST-DESCENT METHOD

by Donald S. Hague
Aerophysics Research Corpnraticn

SUMMARY

The variational stespest-descent method is described in
detail. The analysis is first developed for a system consis-
ting of a single-stage. Performance, constraint, and trajec-
tory termination criteria may be any functions of terminal
state and time.

The analysis is then extended to multi-stage systems.
Here, a stage is bounded by two points selected from initial
conditions, points of state derivative discontinuity, and
terminal conditions. In th= multi-stage analysis the stage-
times replace the independent variable time as the independent
variable time itself thus becomes an additional state variable.

The three-degree point-mass equations of motion for a
vehicle maneuvering in the vicinity ot a central planet are
developed in rectangular rotating coordinates. Planetary
characteristics include up to four harmonics in the gravita-
tional field, flattening of the polar axis, layered atmosphere,
and wind structure. Vehicle characteristics include generalized
aerodynamic and thrust descriptions in terms of up to six
control variables.

Weighting matrix or control variable metric tensor defin-
itions are presented in some detail. The problem of false
convergence induced by ill-chosen weighting matrices is dis-
cussed in terms of an order of magnitude analysis.



INTRODUCTION

Trajectory optimization by the Steepest-Descent Method is
now a routine performance estimation at several government re-
search establishments and major aerospace concerns. The computer
program utilized for trajectory optimization studies in this
report is capable of determining optimal three-dimensional
flight paths for a wide variety of vehicles in the vicinity of
a single planet. Atmospheric effects may be included, if
desired. Past program applications include flight path opti-
mization of

a. High performance supersonic aircraft

b. Spacecraft orbital transfer rendezvous and
re-entry

c. Multi-stage booster ascent trajectories

d. Boost-glide re-entry vehicles

e. Advanced hypersonic cruise aircraft

f. Air-to-ground missiles,

Optimal control can be determined for any combination of
the time varying wvarialrles

a. Angle-of-attack (or pitch angle)
b. Bank-angle

c. Side-slip

d. Throttle

e. Two thrust orientation angles

All the commonly emplnyed terminal perfo.mance and constraint
criteria may be specified. Inequality constraints may be im-
posed along the vehicle flight path.

Several cptions are available for specification of vehic?-
aerodynamic and propulsive options. Data and vehicle charac
teristics option can be modified at preselected stage points.
An arbitrary number of stage points may be specified.

Planetary characteristics are nominally set to those ot
the earth. Up to four gravitational harmonics may be specified.
Nominal planetary atmosphere employed is the 1959 ARDC. A
variety of wind specification opticns are available. An ellip-
scidal planetary shape may be specified.

The original trajectory optimization program is described
in References 1 and 2. Equations of motion employed are
described in References 3 and 4. Some past applications are
described in References 5 and 6. An extension of program capa-
bility is described in Reference 7. An extension to ~imultan-
eously determine both optimal time varying control and discrete



stave points together with some applicatiors are described in
References 8 and 9. A guidance and control application, the
so-called lambda~guidance scheme, is reported in Reference 10.

The optimization program of References 1 and 2 employs
a second-order prediction scheme and several control variable
"weighting matrix" options to assist convergence of the steepest-
descent algorithm. These two features have also been included
in a recently developed trajectory optimization, Reference 1l.
They are also retained as convergence options in an exteanded
version of the program of Reference 1 and 2, reported in Ref-
erence 12,



THE STEEPEST DESCENT METHOD

Problem Statement

Point mass motion is governed by three second order
differential equations of position together with a first
order differential equation governing the mass. By suit-~
ably defining additional state variables, it is possible
to reduce these equations to a set of first order differ-
ential equations. Pcint mass motion is, therefore, governed
by a set of first order differential equations. The form
of these equations is

}'-.,(t){ tr fa(®), an(), t)f

n*l,?........N
B=1,2........M (1)

]

That is, there are N state variables whose derivatives
X, (t) are defined by N first order differential equations
involving the state var_ables, together with M control vari-
ables, um(t), and t, the independent variable itself.

Constraints may be imposed on a set of functions of the
state variables and time at the end of the trajectory. 1In
this case, a set of constraint functions of the form

o s 3 -

p=132.......P (2)

can be constructed which the final trajectory must satisfy.
Any one of the constraints may be used as a cut-off function
which, when satisfied, will terminate a particular trajectory.
The cut-off function can, therefore, be written in the form

9=9€‘.,(T). ‘r) =0 (3)

and determines the trajectory termination time T. 1In all,
then, when the cut-off function i: included, there are
(P + 1) end constraints.

Finally, it may be that some other function of the state
variables and time at tne end of the trajectory is *o be
optimized. Hence, a p«_ -off function

\
¢=9 (xn('r't (4)

which is to be maximized . ed, can be cunstructed.



Now, suppose that a nominal trajectory is available. The
requirements of this trajectory are modest; it must satisfy
the cut-off condition, Equation (3), but it need not optimize
the pay-off function or satisfy the constraint equations. To
gererate this nominal trajectory by integrating Equations (1),
the vehicle characteristics, the initial state variable values,
and a nominal control variable history must be known. Once
this nominal trajectory is available, the steepest descent
process can be applied. To do this, the trajectory showing the
greatest improvement in the pay-off function, while at the
same time eliminating a given amount of the end point erro:s
as measured by Equations (2) for a given size of control vari-
able perturbation, is obtained by application of the Variational
Calculus.

Equations (2) provide an end point error measure, for they
will only be satisfied if the end points have been achieved.
Therefore, any non-zerc Yp represents an end point error which
must be corrected. A convenient measure of the control variable
perturbation can be defined by the scalar quantity,

[sa(t)J I-W(t)];éa(t)} at (5)

where W is any arbitrary symmetric matrix. In the case where

all control variables have a similar ability to affect the
trajectory, W is taken equal to the unit matrix, and DP? be-
comes the integrated square of the control variable perturbations
da(t). It might be noted that if Equation 5 is to have meaning,
it is essential that all control variables have the same dime. -
sions. To meet this condition, the control variables can be
expressed in non-dimensional form.

DP° =ST

Y

The constraint on control variable perturbation size repre-
sented by Equation (5) is an essential element of the steepest
descent process; for the optimum perturbation will be found by
local linearization of the non-linear trajectory equations about
the nominal path. To insure validity of the linearized approx-
imation, the analysis must be limited to small contreol variable
perturbations by means of Equation (5) which provides an integ-
ral measure of the local perturbation magnitudes.

Single Stage Analysis

The steepest descent process has been outlined above. To
implement this method, an analysis of all perturbations about
the nominal trajectory must be undertaken. In the present
report, all perturbations will be linearized; only first

order perturbations in the control and state variables will be
considered. The objective of the linearized analysis is

———



determination of the optimum control variable perturbation in
the sense discussed in the previous section.

Denoting variableg on the nominal trajectory by a bar

ga'(t) nominal ={Zm(t)§ (6)

and
;)5,(t)§nomi"' = ;in(t)s (7)
where there are M control variables and N state variables.

Now consider a small perturbation to the control variable
history,Sa(t); this in turn will cause a small perturbation in
the state variable history, éx(t). The new values of the vari-
ables become

;a(t)} =;;(t)¥ +;6a(t)z (8)
and
jxmf =i;(t>} . faxmz (9)

The nominal state variable and perturbed state variable
histories can also be written as

{;(t)} = {X(to)} + St {f(; (t), a (t), t)} at (10)

to

{x(t)} = {x(to)} + St {f(sc' +8x, a +da, t)} at (11)

to

Subtracting Equation (10) from Equation (il) and using
Taylor's expansion to first order,

{x(t)} - {;(t)} =S: {% TN g__ . 6am;dt - {6x(t)}
(o]

/]
(12)
where

f=r (E(t), a (t), t) (13)

and where the repeatel index indicates a summation over all
possible values. Differentiation leads to

%33:(1-. )

g.;; 50 + g__-aa"'s (14a)

6



or in matrix form

gg{eh(t)} ; [F]{ax} +[c] {aa} (14b)
where
(1)

Here the (f,J)th element lies in the ith row and jth column of

the matrices; F is an N x N matrix and G is an N x M matrix.
The effect of these perturbations on pay-offi, cut-off, and

constraint <unctions must now be determined. A general method

for obtain.ng these effects, known as the 'adjoint method,'
Reference 13,is to define a new cet of variables by the equations

[i(ﬂ]: -[F(t)]'[)\(c)] (16)

By specifying various boundary conditions on the A, the
crhanges in all fiactions of interest can be found in turn. To
show this pre-multiply Equation (14) by X' and Equation (16)
by éx', transpose the second of these equations and sum with

g —

[A]aggg(axd + [i}
DI bl s
which may be written as

a ()\'Gx)z - [x]'[c]{aa} (18)

Integrating Equation (18) over the trajectory

{xlsx}T - {A'ax};o = S:o[x][c]{sa} dat (19)

Now def‘ne three distinct sets of A functions by applying
the following boundary conditions at t = T:

sl o)

X
gg__s - {vaT)} (20b)

|
o] 3] o




Equation (16) may now be integrated in the reverse direction
(i.e., from T to t ) to obtain the functions, {r4(t)}, {Ag(t}},
and {Aw (t) }.

Substituting each of these functions into Equation (19) in
turn and noting that

qub(T)-{"x} B L%J{""% 5¢4ur (21a)
-)‘Q(T)-{‘sx} - _g_gj{ax}= 88 o (21b)
.X"‘(T)T { .sx} i ;g% “}z{ Nter} (21c)
It follows that

e el puolfoce)
52y _p =Sl:°l.)\QJ:G:{Ja}dt +L)\Q(to)J{6x(to)} _

{W} -7 =S’:o[)\¢]'[G:{6a}dt +}¢(t0)] '{ ax(to)}
(22¢)

Now, Equations (22) give the changes in pay-off function,
cut-off function and constraint functions at the terminal time
of the nominal trajectory; however, on the perturbed trajectory,
the cut-off will usually occur at some perturbed time, T + LT.
In this case, the total change in the above quantities becomes

4 = S:olxd,‘l[cj{aa}dt + I_xd,(to)J {ax(to)} + é(T) AT .
an = S:OI'AQJ[GJ{M} at + [AQ(tO)J {Jx(to)} + §(T) AT .
{dw} - SZJ}*] [c ]{aa} at + [)‘w(to)] {.sx(to)} +{{o (T)}AT .



Equations (23) supply the change in pay-off, cut-off, and
constraint functions on the perturbed trajectory.

The time perturbation in Equations (23a) and (23c) may be
eliminated by noting that, by definition of the cut-off function,
Equation (23pb) must be zero.

on - il e Do

Substituting Equation @4) into Equations (23a) and (23c)

do -s:olwszj [G] {6a }dt + lxw(to)J {GX(to)}
{”} ‘sfo[*m]' [G]{aa} at + [xm(to)] '{6x(t°)} (25b)

(25a)

where

I
[xm]g [M] -{ﬁ_?_z(}_l)ﬁgl_ (26b)
QLT

Equations (25) reveal the significance of the A functions,
originally defined by Equations (16) and (20). At time t_,
A¢q gives the sensitivity of ¢ (T) to small perturbations in the
siate variables at tg. Similarly, A¢q(t) measures the sensi-
tivity of ¢(T) to small perturbations in the state variables at
any time t. The sensitivity of the constraints dy to small
state variable perturbations at any time is likewise defined
by each row of the function Awﬂ(t).

{MQ}:{’W’}’ i %{m} (26a)

A measure of the sensitivity of a trajectory to control
variable perturbations can be obtained from the qguantities Ay'G
and Ay'nG. Consider a pulse control variable perturbation ag
time t', that is, §(t-t'), where § is the Dirac delta function.
With this type of control variable perturbation, it can be seen
from Equations (25) that the changes in pay-off and constraint
functions will be A¢Q(t')'G(t') and Ay (t')'G{t'), respectively,
for fixed initial conditions.

In order to apply the steepest-descent process, the perfor-

mance function change, Equation (20a), must be maximized; subject
to specified changes in the constraints, Equation (25b); and a

5



given size perturbation to the control variables, Equation (5).
This can be achieved by constructing an augmented function in
the manner of Lagrange which is to be maximized instead of d¢.
For the present problem, the augmented function is

o<f, blfe) oo « pateo] ot

LJ%g: xw aa}dt + ["W(to)] {6x(to)}$
o [ el e

t, (27)

where the v are P undetermined Lagrangian multipliers, and u
is a single undetermined Lagrangian multiplier. The objective
now is to find that variation of the control variable history
which will maximize U.

Consider a variation of 8a , that is a 6(éa). Then,
it is always possible to write any 8a distribution in the form

{60:}-{1\(1;)} k, or lan - l_A(t)Jk (28)

where A(t) prescribes the perturbation shape;and k, its mag-
nitude. Now that part of Equation (27) which depends on da,
the perturbation in the control variable, can be written in
the form

T. kS l_)‘"’QJ[ ]{A(t) at + kLJS [wg]'[c]{A(t)} at
+ kepS':OLA(t)J[W]{A(t)} at (29)

So that

. S:ol_xm_l [c] {a)} av +|_u_|S:o[xw]'[c]{A(t)} at
2&8:0[“1:)] [wJ {A(t)} at

1o

(30)



or

T
59« | (Lond (o] - 4603} +LoJva) [o]4oe - o)
o +2ufE . At [w] {n . A(t)} at
T
o\ |poatle] L Jua] [o]< e o Jfpcseof
to
(31)
where it has been noted from Equation (28) that
§(Sa) = A(t) Sk (32)

Now, since Equation (31) holds for any A(t), it follows
that it is a general relationship. Further,for U to be an ex~
tremal, 6U must be zero.

If U has been_maximized by means of a control variable
perturbation da, 68U must be stationary for all small pertur-
bations to the da, that is, for all §(¢éa). The only way in
which Equation (31) can be zero fecr all 8§(8a) is for the
coefficient of §(8a) to be identically zero. That this last
statement is true follows from considering the case where, over
some finite time interval between ty and T, the coefficient of
§(8a) is, say, positive. If this were the case, we could
choose a §(8a) distribution that was also positive in this
same interval and zero elsewhere between t, and T. It would
follow that U was also positive, and, hence, U could not be
maximum. A similar argument holds when §(8a) is negative oves
any interval in t, to T. Hence, the coefficient of §(6a) must
be identically zero in the whole interval tgo < t < T. This
arovment is essentially based on that presented by Goldstein,
Reference 1l4. It follows that

H-MQJ v l"J["w]][G]= 2u|sa|[ ¥] (33)



Transposing, noting that W is symmetric, and solving for d$a,

food - BT [ oont [oal I

Substituting Equation (34) into Equation (25b)

{dﬁ} = - —é—,,{{ Iw}*[Iw]{ }} (352)

where

{dﬁ} - {dw} -[xm(to)] '{6x(to)} (35b)

and

[Iw] - S:O[AW]'[G][ w]'l [G ]'[xw]dt (36a)

{ta}- S:o[xm]'[c] [v]*[e ]{ hoaf 2t (36D)
For subsequent use define the integral

Toe 'S: el €] [“]1[6]'{ Noaf (36c)

The multipliers v can be expressed in terms of the multipliers
u by Equation (35a)

{v}= -[I‘N]-l{ay(:dﬁ;-*{llw}} (37)

Substituting Equation (34) ini{:. Equation (5)

- lﬁf(I‘fW [%0el{*} + L~ v+ » [0l }) o)

Transposing the second term in the right hand side bracket

= (e L LIRE) o

Substituting Equation (37) in Equation (39)

12



and noting that [I¢érl is symmetrical gives

o 0 = 1, - 1y [1y] {1y + Lee][xp o  {es}  wo

So that

o tJIw- L1yl [1y] " {Tpel
DR - |af] [TyyJ T {8} (41)

Substituting Equation (41) into Equation (37), the remaining
Lagrangian multipliers are obtained in the form

R )

(42)

The optimum control perturbation is found by substituting
Equations (41) and (42) back into Equation (34) and is

froh 2[4 [T et D] [0 {10

. \/ or? - 1a) [1yy]t 1agl
Too - LIpal[ Typd™t {1yel

+[¥}2[e] [ [z {2} (43)

With this equation the steepest-descent control pertur-
bation has been determined. Perturbing the control variables
according to Equation (43) gives the optimum change in the
trajectory as discussed in the section entitled, "Problem
Statement," with the added effect of changes in the initial
value of the state variables included through the term in d8.
The appropriate sign to use on the first term of equation (43)
can be determined by evaluating d¢. Subscituting the optimum
control perturbation into Equation (Z5a) results in the
equation shown on the followinyg page.
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1= ﬂ/ (00 - lrve ) [ 70 {Iw})(”"a - | 8] [z { dﬂ})
* lIwJ[Iw]'l{dﬁ} *l"m("o)J { 8x(to)} (44)

As the quantity in the radical must be positive to assure
the change in ¢ is real, it follows that the negative si- ™
must be taken when minimizing the payoff function and the
positive sign when maximizing the payoff function.

An Alternative Analysis Using the Independent Variable
for Cut-Off

In the anal,sis of the previous section, it is implied
that any function of the form

2(xy(T), T) = 0 (45)
will suffice to terminate the trajectory. While this is true
in an analytic sense, in practice any function passing through

zero more than once in the cut-off region may be difficult to
employ for cut-off purposes.

2 4

Pﬂluuuunumib Nominal
ﬂ.(

Perturbed

l — &_'..“_’"”H t

Figure 1.-- Double Valued Cut-0ff Function

Figure 1 presents a nominal cut-off function history which
decreases monotonically. The perturbed cut-off function
history, shown dotted, kehaves in a different manner in that
it passes through zero twice in the cut-off region. As the
trajectory must be integrated numerically, there is a danger
that cut-off will occur the first time {} passes through zero
ir-tead of the second, thereby introducing both errors in
the linearized perturbations and preventing the build-up of
the anticipated cut~-off function history.



One method for overcoming this difficulty is to terminate
the trajectory at the [ inearly predicted cut-off value uf the
independent variable, . + AT. This revises the analysis of
the previous se 'tion; for by terminating the trajectory in
this manner, a sma'l error will exist in the value of the cut-
off function, say AQ. In this case, Equation (24) must be
modified to account for the cut-off function error. Allowing
for this effect, we can write in place oi Equation (24)

_ (AQ -/t‘.z |.>‘9,| [G] {Ga}dt - [xn(to)J {ax(to)})

AT

a(r)
(46)
Substituting into Equations (23a) and (23b)
e = ’ A rf"j{‘éa}dt Aylto)l {6 ) &A
= . l¢$1|[1-( +l¢9 toJ{x(to} +§ Q (47a)
and
LT ' timt
T i (T
{aw} _fto L)\‘pn]-.]{ﬁa} at + [x,,ﬂ(togl {L{(to)} +Apataa  (47)

The additional term plays no part in the egquations which
result from taking a variation in 6¢;hence, the xemaining
equations ir this section up to Equation (34) are still cor-
rect. Equation (34) must now be substituted into Equation (47b)
instead of Equation (25b) with the result

{dﬂ}- %%))}-m - ;‘% {{I¢,¢}+ [I\b_',-l{ u}} (48)

3

fi) « fosy - Lk )

T
a(T) AQ

Defining dB* by

and substituting df* for dR in the remainder of the analysis

of the previous section, the entire analysis remains correct

up to and including Equation (43). Equation (43) still gives
the optimum control variable perturbation. The cha.ge in ¢,

however, becomes



oo V(a1 ] ") - ][} )

+ lx,‘q ﬁw]-l{dﬂ*} + lxm(to)] {ax(to)} + s%(%'%m

(50)
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MULTI-STAGE ANALYSIS

Outiine of Multi-Stage Analysis

Trajectories in which some of the state variables or
state variable deriva*ives have a discontinuity for some
value, t', of the independent variable, t, are frequently
encountered. Such a point will be called a stage point.
That portion of a trajectory preceding a stage point is in
a different "stage" to that following the stage point. The
first stage will be that portion of a trajectory lying be-
tween t. and the first stage point; the s hstage will b

o, ; ; £h
that portion of the trajectory lying between the (s-1) and
sth stage points. The final stage will be that portion of
the trajectory lying between the last stage point and the
final cut-off time.

It is convenient in the analysis of multi-stage trajec-
tories to define a new independent variable to replace t.
This new independent variable, the stage time 1, is defined
segarately for each stage in the following manner. Let the
sth stage commence at time t;_l and terminate at time te
. Then, *

T =t - t!

s s-1 (51)

so that when

t = té—l y Tg =0 (52)

The sth stage is terminated by a cut-off function QS,
assumed to be of the form

Qg = 9,( x(Tg), Ts) =0 (53)

where Tg is the stage time at cut-off.

The analysis of the preceding section, pages 4 to 16,
no longer holds for a staged trajectory, unless the stage
points are determined by cut-off functions of the form

Q, (Tg) =0 (54)

That is, the stages are of fixed length in the independent
variable.

For suppose the nominal trajectory has an sth stage
lying in the region

v \

é-l Lt =2ty (55,

17



Then op the perturbed trajectory unless the sth stage and the
(s-1)t stage are terminated in the manner of Equation (54),
the sth stage will occupy the region

] < L} 1
tog t At =t tl 4+ At (56)

by virtue of the perturbations in the state variables. This,
in turn, will mean that estimates of the optimum a-perturbation
based on the analysis of the preceding section, pages 4 tolé
will be in error due to the fact that the F and G matrices

are incorrect in the regions between

1 1 [ ]
(ts-l' ts-l + Ats—l)

and
? L} L
(ts, tS + Ats)

In such a situation, a new factor enters the optimization
problem; for control may be exercised over the position of all
or some >f the stage points. In this case not just the opti-
mum control variaklc perturbation is sought by the analyst but
rather the optimum combination of control variable and stage
point perturbations when considered simultaneously. The objec-
tive in the following section is to obtain this optimum
combined perturbation.

Changes in Payoff and Constraint Functions
in Combined Perturbation

Given a nominal multi-stage trajectory, suppose the
control variable histories and the stage point positions are
simultaneously perturbed throughout the whole trajectory.
Considering the first stage, the effect of this combined per-
turbation, when the stage terminates, will appear as a modi-
fication in the state variables values. This perturbation in
the first stage final state variable values may be looked
apon as a perturbation in the initial state variable values
to the second stage. The combined effect of stage point,
control variables, and initial state variable perturbations
in the second stage will be to produce a perturbation in the
state variable values at the second stage termination. These
effects ca’- "e in like manner until the last stage is reacled.
Perturbatic in a typical stage are illustrated in Figure 2.

18



6xs(T3+ ATs)

es
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perturbed trajectory

a

nominal trajectory

éxg - perturbations in
% variable valu

initial

Tg stLge time

0
Figure 2.-- Perturbations in the sth Stage

Consider the last stage. Since the result of trajectory
perturbations ahead of this stage appear solely as initial
state variable perturbations, the optimum combined perturbation
along the whole trajectory can be found by optimizing the last
stage in the presence of initial state variable perturbations
which are a function of the previous stage perturbations.

Consider the sth stage of the perturbed trajectory. As
noted above, the effect of perturbations in all stages pre-
ceding the sth appear as some perturbation in the initial state
variable values of the sth stage, 6x.. Suppose the sth stage
is terminated on the nominal trajectSry by some function of

the form
Qg = Qs(x(Ts)" TS) =0 (57)

Then, provided the stage time, 15, is used as the independent
variable instead of t, the change in any function of the state
variables and 1g at cut-off can be found by

fovanh - “hens] o liary +Prvas@] {x,0)

where Vg is any function of the form

= fuee =)
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T e ) e B

f4(T,) (59)
Here MYz and AQg are obtained by integﬁating the adjoint

equations in stage time through the s stage subject to the
boundary conditions

[)“I’S(Ts)] = [Z:Js] (60)

o) - 132

So far, the cut-off function has not ieen perturbed; this can
be achieved by terminating the trajectory when

Qs + AQS = 0 (62)

instead of by Equation (53). Perturbing the cut-off function
will cause a change in the traiectory stage time at cut-off
given by,
AQ
ATS = -.——-s—-

Qs(Ts) (63)

The total change in wg at the termination of the sth stage
will then be given by

Tg )

o ana} o fua el v+ [r0,0] om0

+ {\if.(T, )} AT,

(64)
Suppose the state variables are selected as yg, so that
o - {0
With this choice of ws' Equation (60) becomes
L}
- (9%t

where I is the unit matrix. Denoting the Ayg resulting from
this particular choice of boundary conditions by Axg, it
follows from Equation (64) that the change in state variables

20



at termination of the sth stage is

{ bxg(1g +a1,)} -[Ta[xms]'[ G]{Ga}drs +["xn,,(°)] '{axs(o)}+{i(1‘,)}aws

These perturbations are the state variable changes to the left
of s + 1 stage point.

The § x to the right of a stage point, sx*)  are not
necessarily equal to those on the left, Gx('), Figure 3, but
a matrix Pg can be defined which will transform the left-hand
perturbations into the right hand ones.

fodil) = [m] {2} - [m] foncr, +am)

Typically, for example, consider the case of a multi-stage
boost vehicle with a fixed amount of fuel in each stage. The
mass of the remaining portions of the vehicle at the commence-
ment of the sth stage is the sum of the empty weights of the
remaining stages, together with the sum of the fuel contained
in those stages. Perturbations in mass at the termination of
the (s-1)th stage reflect changes in the burning time of that
stage. It will usually be physically impossible to transfer
any fuel remaining in the (s-1)th stage across the interface
with the sth stage,and, hence, changes in the state variable
of mass to the left of the stage point may fail to cause a
corresponding change to the right of the stage point. 1In such
a case, the P matrix will have a null row for that particular
state variable. On the other hand, changes in the state vari-
ables of position to the left of a stage point will always
appear directly as changes to the right of a stage point. The
co.responding row in the P matrix will have unity on the diag-
onal element and zero elsewhere. This is also true of the
state variables of velocity, provided impulsive forces are
absent at the stage point.

Substituting Equation (67) into Equatiocn (68)

{éxs +1} = [Ps]{[ Ts[)\xﬂs] .[G]{éa} arg + [xxns(o)] '{.sxs(o)}+ {i(Ts)}ATs}
- [ps]{{xs} + {'ixﬂs]' {sxs(o)} +{§s} ATS} (69)
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where

(kb= [ [raaa] [] e} e

[Kxﬂs] - [*xﬂs(")] (71)

and

{%) - {;‘a(TS)} (72)

Bxg‘) [{,éxg*) &é') 5x (I)
\\‘ //, S+

Xg. P F x
° %\\‘f/, s s\\‘///xn%ﬁl
sth stage
_ - Co—- & time
—
(8-1)*h " stage point sth stage point

Figure 3.-- Position of Functions Defined in the sth Stage

In some cases additional perturbations in the state
variables to the right of a stage point may be specified. For
example, returning to the case of a multi-stage booster, in a
more sophisticated analysis of booster capability, one may
wish to consider variations in the initial mass of fuel con-
tained within each stage. Typically, in a given iteration the
amount of fuel consumed in the s+lth stage may be either less
than or greater than the total amount of fuel available in
that stage. If this or a similar situation arises, the ini-
tial amount of fuel contained in the stage must be adjusted
in the next iteration. It is essential to have a mechanism
within the optimization analysis which will permit these
required changes to be specified.

The P matrix, as described above, is unable to provide
this mechanism, for the additional changes may clearly be
functions of the state variable perturbations at the termin-
ation of the (s+l1)th stage rather than at the termination of
the sth stage. The P matrix is primarily introduced to con-
vert changes in the state variables at the termination of the
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sth stage into state variable changes at the beginning of
the s+1)th stage. Accordingly, a set of additional state
rariable perturbations {4x l} which are specified directly
may be introduced. The comSIete expression for the state
variable perturbations, therefore, becomes

firaa) = [t} [ B o) +{Fubomsf + fone

With Equation (73) the first objective of this analysis is
achieved: a recursion formula which determines initial state
variable perturbations in the (s+1)th stage when the per-
turbations in the sth stage are known and additional changes
are directly specified in the initial values of the (s+l)th
stage state variables.

(73)

The recursion formula Equation (73) can be applied to
each stage in turn, commencing with the first. 1In the case
of the first stage, there are no perturbations in the initial
state due to prior stages, but there may be perturbations to
the state variables if a search for the optimum trajectory
iritial conditions is being made.

These initial value perturbations will be some combi-
nation of state variable vectors dictated by the particular
problem under con.ideration. For example, suppose the op-
timal launch point for a mobile mission is sought. The
nominal lauvnch point may be specified in terms of latitude
and longitude. On successive iterations the launch point
is perturbed towards the optimal position. The perturbation
in latitude is a state variable vector having components
corresponding to the position state variables and zeros
elsewhere

o9
{Axf} = 5?;

aze (74a)

Here X , Ye’ and Z_ are rectangular coordinates rotating with
the plinet as dis&ussed in a later section, pages 45 to 47.

Similarly, the components for longitude changes are
99 _\
3Xe
o )2
{Axl} = aYe
98_ {74Db)
9Zg

%
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In addition to this type of initial point perturbation15 there
may be changes resulting from previous iterations, Axl .
Combining both types of perturbation, the total change”in the
first stage state variables is

fou} + fom) - Tlost) + o)

Knowing the 6x;, the total initial value perturbations in
the second stage may be computed from Equation (73).

foe} « [} + (o) {om} - fiafon  fon} 0

Proceeding to the next stage,

fof + (el [1a,] (i (ikan  fon)
relee) + (e ] ] )
+[edfidons [ (e [t} on
(o ) [ o] o) [2e) [ Yo o}

{ou,} [P3]{{K3} s [X’xg3]' {ox5) +{§3}AT3} + {Axh}

Q3P Ky + Q3PKy + P3Kg

+

QiQP; XjAT) + QP XAT, + Py X3ATy

+ Q3Q2Ql Axl + Q3Q2 Ax2 + Q3 Ax3 + Axu
(70)

(8] - [2a][Ps,] (79)

In general, the tota%hstate variable perturbation at the
commencement of the (s+l) stage is

{6xs+l} = (QSQS-].' tesee 0Q2P1Kl + QBQS"]-. coces uQ3Pé(2 b o=
m--e + QiP5 1Kgy + PsKs)
+ Qst_l- eoee anPl-x-lATl + QGQB-].‘ seee -Q3P2;2AT2 + mow

=e= + QP 1%, 3ATg 1 + P sstTc)

where

+ qus_l" . OQl Ax'l + QSQB-I. X ...Qe Ax2 4 mwve=

=== + Q) A%, ) + Q4 8%, + Axs«fl) (80)
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At the commencement of the last (Nth) stage

{an} = Ni:l [Ag] {Ks} + Ni:l {BE}ATS + ZN:l [Cﬂ{Axs} (81)
s=1 s=1 8=
where
[AI:] = QNoiQN-2 ¢ ¢ o - e o0 e QP , S < N-1
- P, , S§=N-1 (82)
{B§}= QUi -+ - - e - ... QuPs Xg , §<N-L
= Psis , 8 =N-1 (83)
[c§]=QN_lQN_2.........qs , S<N
= I s 9 =N (84)

Knowing the initial perturbations to the last stage, Equation
(25) can be applied in stage time to find changes in the pay-
off function ¢, and the constraints.

56 = /TN[* say] [6]{sefery + |roan(o)|{os} (85)

(o)

ph-f Domlliebon-PossoTion) o

(o)

and on substituting for éxN

5% = Ky, + [Tmuj{ NZ;l [Ag]{ Ks} * NZl {Bg}ATs T ui [Cﬁ]{ﬁxs}} (87)

s=1 : =1 s=1

M

s=l

{“’} = {Kw} *[*_WN] lgm [Ag] {K"} ! %':’l {Bg}AT“ ' él[cg]{“‘} } (88)
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where

Ky / >~¢9 ary
o w)[e){ "

TN
K“¢ / an
e}

It is convenient to umbine the integrals, Kg, through each
stage into a single set of integrals throughout the completa
_trajectory. To accomplish this, define

(90)

'i‘m _I' ﬁmNJ[Ag] [Axns]'; s< N
= _)“NZNJ ; s=N (91)
[rvd] = (e ] [ (g s s < 02)
= }¢9N]. 5 =N

Expanding Equation (87)

so =ty +{(omn) T [ (el 3 o8 % 8

T

o Bonallft s+ 5 Lnnl40) ] [}

MQNJ% AT + z__:l[cs] {Axs}} (93)
‘_l f ab,g,g J [G da d‘rs I-MQNJ{:;L. {BE}AT, " g:l[c’;] {Axs}}
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The first term,which is the summation of a set of integ-
rals throughout each stage on the unperturbed trajectory, can
be combired into one integral by reverting to the original
independent variable t. That is

o= {T l{\dﬁ][(}]{&a} at + l*_‘mr:}{g{ﬁi} AT + il [cg] {Axs}} (95)
o S Dol o« e 2 0+ o]

(96)

Egquations (95) and (96) give the total change in paycf€f
and constraint functions when the trajectory simuitaneously
undergoes perturbations ir the ccntrol variable hisrtcries,
stage point positicns and initial state variable values ir
each stage. The sensiiivity of payoff and constr:int functicons
to these variations is immediately apparent. For pulse
variations in the control variables at time t = t', the irdi-
vidual sensitivities of the payoff tuuction are the elements
of the row matrix

[oaen) - [rsqters | o, (97)

The individual sensitivities of the constraint functions to
control variable pulse perturbations are similarly the elements
of the rectangular matrix

[valen] - [A‘m]' o] (98)

The sensitivity of the payoff function with respect to
stage point variations follows directly from the seccond term
of Equation (95). If the sth stage alone is perturbed by ATg,

AT, = I_T\‘”QN_I {BI:}

¢
(99)

Similarly, the constraint sensitivities with respect to
stac » point perturbations are obtained from Equation (9¢)

{Yar,} - [Wf-n]'{sg} (100)
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Finally, the sensitivities to initial state variable
value perturbations in each stage can be obtained from the
last terms in Equations (95) and (96). The payoff function
sensitivities for the sth stage are t.e elements of

VA&J - Pmﬂj 'c:] (101)

.

and the constraint function sensitivities for the sth stage
are the elements of the rectanqular matrix

[¥ax,] - [Wﬂn]' [} ] (102)

In general two types of stage point must be considered:
those whose perturbation is prescribed and those which are
free to optimize. Hence,

?;‘;{BE}ATS = il{ng.}urs. + _),ST.{Bg}ATE

s=1 (103)

where the AT_, are prescribed and the AT- are to be optimized.
Substituting Equation (103) into Equatioﬁ (95)

= Sloafieloepe (o2 o}

* |_7¢nn_!{§l{n§-} ATgr * g'l[cg] {A"B}} (104)

Substituting Equation (103) into Eguation (96)

{ar} /T[A‘,]'[G]{é}dti»)\— '%f}n‘:m\'

= Q @ [ Q] { } ]

e ViR 8=l ; (105)
o

where all the quantities specified directlr are Jrouped to-

gether in the term,

fir}= {ov} - (o] .;s-}i (224} emas + 2‘1 [ {Ax'}} (106)

With Equations (104) and (105),expressions for the change
in the paycff and constraint functions resulting from a gener-
al perturbation of control variable histories and stage point
perturbations are obtained. The optimal perturbation has yet
to be found. This task is considered in the next section.
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Derivation of Variational Equations

The preceding section derived expressions for payoff
and constraint function changes when a combined perturbation
was introduced in the contrcl variable histories, stage
point positions, and initial state variable values in each
stage. The perturbacion which optimizes payoff function
change while at the same time producing specified changes
in the constraints {8y} and the initial state variable
values in each stage {Ax.} will now be obtained. 1In
order to obtain a meaning%ul solution, constraints are
placed on perturbation magnitudes. Control variable per-
turbations are limited in the manner of the preceding section
by introducing the constraint

- {T(l_aa‘l [w] {6(1}) at

(5)

A similar constraint (DT2) is introduced to limit total
stage point perturbation.

(107)

Here the Vg are a set of weighting functions used to
modulate optimal stage point perturbations.

Proceeding as in the previous section,pages 10 to 13
an augmented function is const ucted in the manner of
Lagrange and minimized (maximized). 1In the present case,
the augmented function is
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tellf Bt 1

(RPN
+u f Tl_aa_l[w]{aa} at +w(§i Vx AT‘EZ)

tO
(108)

where w is a Lagrangean Multiplier introduced for the stage
point perturbation constr=aint.

First, differentiate with respect to each stage point
perturbation being optimized. This results in S equations,

ey~ Lo o} 2oy oo ] ()

(109)

These expressions must disappear for U to be an extremal.
Solving for the AT;

L
1 v - N
AT= = - |}¢Q_I+[0 b; ]J-{n_}
b m;l x| Lo JPve | {22 (110)
Squaring both sides_of Equation (110), multiplying throughout

by Vg, summing the S equations, and using Equation (107)
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R > o (oo (] [ )

25 o] ] L o - 5]

=]
(111)
T _ ranging Equation (111l) and taking the summation into
the macrix product
w2 = =21 40+ 2L P L
el -] R AP vo +loJ[w]{a
or
B - g - 2|eygff o} ool o}
(112)
where

Lgo =-MQ'J[D

(113)

]
[L“"’J ) K‘“"J[D] [xm“] (114)
] [’im,,] (115)

(116)

=[] [
and [p] - Z Vg { B} |_35J

8=1

Second, take a variat.on of Sa to Equation (108) in a similar
manner to the preceding section

3U(q) = fk\wj[ ] Pabat + 2] T_Am] []{62a}dt + 2#44,16aj[w]{62a}dt=0
) LB o
et BT - Baadfol]
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Substituting into Equation (105)

{or} - - %{{JW} +[‘W]{"}} *[r'“’“]'{ é{ﬁg} AT?} (120)

where we define
T = t
a0 = J; [‘NJ[G] [¥] l[G J{rofee (121)

rT 0 e . ?
{Jw} o [“vﬁﬂ ][G] ] l{ G] [A¢9]dt (122)

rT

[7v] - J, [Awﬂ][“ ]["]‘l [G]'[“W]‘“ (123)

o

Transposing Equation (110), substituting into Equation (120),
and using Equation (11.6)

fori= - o f{a) + [sallo} - B [omn] 2 {Eodte) * (ool 120

Substituting Equations (114) and (115) into Equation (124),
multiplying throughout by 2wy and collecting terms on the
left

bl Bl (bl bl -2 e

Third, substitute Equation (119) into Equation (5)

-1 C RO GloEa TR -

Using Equations (121), (122), and (123), multiplying by 4u?
and collecting on the left

wwe32 - 3, - 2|oyf{ 0 - [oJ[q,;,]{o} =0 (127)
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Equations (112), (125), and (127) are the variational
equations which must be solved to obtain the Lagrangean
multipliers and, hence, the optimal perturbations. The
solution to the optimal staging problem is immediately
available in terms of the Lagrangian Multipliers. Equation
(119) provides the optimal control variable perturbation

{aa} --L [w]-l [G]'{{A¢Q} + [A“,Q]{l’}} (119)

The optimum stage point perturbations are given by Equations
(110). Rearranging and combining Equations (l110) into one
matrix equation

forsh =& ol (8] | (o) o [ {2} 2o

where the columns of ([BY\] are the (B
of form between the expressions for {§
immediately apparent.

} . The similarity
} and {ATgl is

n Z

The optimal payoff function change is found by substi-
tuting Equation (119) and (128) into Equation (104)

=& fae e faallolf - £ oo vaffo)]

Bl 5 00 o e Bl

where the J terms are defined by Egquations (121) to (123)
and the L terms by Equations (11i3) to (1l16}.

The equations presented here in this section constitute
the general solution to the optimal staging problem. A
closed form solution to these equations cannot be obtained.
For straightforward elimination by Sylvester's Method leads
to a high order polynomial equation indicating that a closed
form solution is unattainable. Accordingly, in the next
section a further assumption permitting attainment of a closed
form solution is made.

Solution Using Combined Step-Size Parameter
The fundamental reason a closed form solution to the
general optimal staging equations could not be obtained in

the precediag section, pages 29 to 33 , was the introduction
of separate Lagrangean Multipliers for the control variable
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and stage point perturbations. If these perturbations are
combinea and a single step-size parameter defined by the
expression

T

nc? = ft l_&a(t)J [w(t)]{éa(t)} dt + f,l Vs oty (130)
o -

this difficul .y can be avoided. It should be noted that the
weighting functions, Vz, must be dimensional quantities to
insure compatibility between both portionrs of Equation (130).

Returning to the augmented function of Equation (108)
it follows that in the last line w can now be replaced by a.
This substitution can also be made in Equations (109) to (112).
Equations (112) and (127) can then be combined to obtain

W2.D02 - (I +Tgg) - < “_ij + [LQ¢JJ{0}
-[oJ[[JW] +[Lw“{o} (131)

Substituting p for w into the equations leading to
Equation (125) results in the expression

2;;{6[‘}4» {{J\w} *{I‘W}} * [JW] +[Lw] {0 } - (132)

It follows by compariscn with Equations (39) and (35a)
that p and {v} are given by Equations (40) and (42) provided
the {dB} are replaced by {¢ér'} and the I by the appropriate
(J + L). For example,

Zop™> Yo *Lse

The optimal control variable perturbation is then given
by Equation (43) with the I replaced by the (J + L) and the
A by the appropriate A. For example,

{oa == {440}

Substituting p and {v} into Equation (128), the optimal
stage point perturbations are obtained in the form
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{A'ILS} = i[vsJ-l[sl:]'{{'imN} - [&QN][JW + Lw]-l {J¢¢ + LM}}

, J pe? - [or | [7qy + Lewd o}

(Tpp + Lga) = [Ne + Lyad By + L™ {90 * Lyo!

+ [VBJ']' [nl:]' [me] [Jw + LW] ‘1{61‘} (133)

With these equations a general solution to the optimal
staging problem has bLeen obtained. The main difficulty in
applying the results will undoubhtedly lie in determining
suitable weighting matrices.
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POINT MASS TRAJECTORY EQUATIONS

Basic State Variables

Preceding portions of this report derived a successive
approximation scheme for computation of optimum trajectories
generated by a set of first order differential equations. The
analysis is quite general and holds for trajectories generated
by any set of first order differential equations. The object
of the present section is to specialize the analysis to point
mass vehicle trajectory problems. This will be accomplished
when a suitable set of state variables, together with their
derivatives, the control variables, and the forces associated
with the control variables has been specified. First, a suit-
able coordinate system is selected,and Newton's Laws in this
system are used to define the vehicle's motion.

Several suitable coordinate systems are available for
point mass trajectory computations. The basic set of coordi-
nates used in the present analysis is a rectangular set rota-
ting with the earth, (X_,, Ye, Zg). This coordinate system is
: ) . e
illustrated in Figure 4.

Greenwich ' Position of vehicle in
Meridian ~ __;_ _ inertial space at t= t0
att=t, - =~

// l / » ~
// : 4 \\
"2 \
| 2
—_— - —— X
R e
' . /
Y.
inertial “l‘\
‘ e »] ‘ mp(t—to)
Nmmm
Ye
Ze, Zinertial

Figure 4.— Basic Coordinate System
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The Xe and Ye axes lie in the equatorial plane, the positive
Xe axis being initially chosen as the intersection of this plane
with the vehicle longitudinal plane at t =t, . VYe is 90° to
the west of Xe, and Zp is positive through the South Pole.
Denoting the radius vector from the center of the earth to the

point mass vehicle by R , its magnitude is given by,
2
Iml=Vx,2 + r.{+ Ze
(134)
The angle between R and the North Pole is given by
¢' = 90 ~ ¢p (135)

where ¢, is the latitude of the vehi:cle. As a result of the
earth's rotation, an observer in the (Xe, Ye, Ze) system would
detect an apparent motion of the point mass if it were at rest
in inertial space. In time At the apparent displacement of
such a vehicle would be

- 3 ]
éRapparent = R sin ¢'. wp At (136)

to the west. In vector notation

This apparent displacement is independent of the vehicle's
motion and exists whether or not the vehicle is at rest in
inertial space. In general, then, to an observer in the rota-
ting coordinate system,

(6R)e = (3R)1nertial + ( & Rlgpparent (138)

o (8 l)inertil.l = §R), +wpxRat {139)

Dividing Equation (139) by AT and taking the limit, it
follows that

140
ar aR (
(T 1nertial = (Fo)e +wpXR
or
V. =V, +w. xR
inertial e P (141)

37



The vector R in Equation (140) could equally well be taken
as any vector; the arguments of Equaticns (134) to (141) stiil
hold. Therefore, in general, for any vector quantity the uper-
ational equality

a a
(R)incrtial - (l'f). twpx (142)

can be defined. Applyirg Equation (142) to Equation (141), the
inertial acceleratior is given by

/
(ginertial N k(g'f)e +Wpx @e + w xR
- (i—i%)' + upx(g%). + wpxapx R (143)

Now Newton's Law applies in inertial space so that in the
rotating system

f = dal + 2w X + w
== =2 R
m (dtZ) P P“pX
¢ e (144)

Here F is the total force acting on the vehicle. This vector
equation can be expressed in component form using the relation-
ships

R = Xgof + Tpef + 2.k (145)

W, B - . k
P R (146)
F = Fx » i + Fy. oj + Flz . k

¢ ¢ (147)

Here 1,j, snd k are unit vectors aligned along the X,, ¥e: and
Zo axes, respectively. Equating components on either side of
Equation (144)
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Fxe _ % : 2 148
_m"£=xe+2wpye-wpxe (148)
Fye=Y-2wp).(e-w,.Y-
w ¢ e (149)
Fz e

e =7
= ¢ (150)

These eguations are not yet in a suitable form for the
steepest descent analysis to be applied, for they are not in
first order form. The transformation of Equations (148) to
(150) into first order forw.. is immediat~ly accomplished if
the following quantitie- are defired as state variablec:

¢ (151)

where

=We =y +v..) +w k
Ve o e e e (152)

With this set of state variables the following expressions for
the state variable derivatives are cbtained from Equations (148)

to (152)

Xe = ue (153
Ye = Ve (154
2e = wg (155)
U, = F 2.,

. Fy 2

Ve = =+ 2uplle +up” Y, (157)
Ve = er

e = (158)
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se equations are in the same form as Equation (1)
pic the total forc~ is a function of the state variables,
a s.. L control varial .;, and time. When the mass is vari-~
able, 1t too must be introdu-ed as a state variable. Any
expression for +he rate of change of mass of the form

n=a (xn(t), a_,(t), t) (159)

may be used in the analysis. The above state variables, Xe,
Yoo 25, Ve, Vg, We, and m will be referred to as the basic
state variables. In certain problems it becomes necessary to
specify additional state variables; these will be discussed
later in this section of the report.

Control Variables

The total force acting on the vehicle has three distinct
sourc:s: first, aerodynamic force as a result of interaction
between the vehicle surfaces and the planetary atmosphere;
second, gravitational rforce as a result of vehicle and planetary
mass interaction; and finaily, thrust forces intrcduced by the
vehicle pcopulsion systeam.

Befoie as.ddynamic forces can be computed, the atmospheric
properties, ‘rehicle valocity relative to the atmosphere, and
vehicle att *e must be specified. Atmospheric propertices can
usually be specified as a function of altitude which, in turn,
is a function of the state variahles Xor Yo, 2 vehicle velo-
city relative to che atisosphere is also a funcﬁlon of the state
variables, for ue, Ve, and w_, are the vehicle veloc’ty compo-
nents irn a rotating system. 1he first and second factors
determining aerodynamic forces are, therefore, f -ctions of
the kasic state variables.

The remaining factor ertering into aerodynamic force
determination, the vehicle attitude, is clearly not a function
of the basic state variables. Fc- given the vehicle's position
inl velocity, we are still gquite I.2e to specify its angular
orientation in space. The angles which determine vehicle
orientation may, therefore, be utilized as control variables by
which aerodynamic forces may Le modulated. Any set of three
independent anqles could be utilized for this purpose. Conven-
tion suggests use of the vehicle angle-of-attack and angle-of-
sideslip to orient the vehicle reference axis with respect t>
the velocity vector. Angle-of-attack, (a) , is the angle
hetween the velocity vector and the vehicle reference axis when
viewed in th: vehicle side elevation. That is in a rectangular
coordinate system, x, y, z with x along the vehicle reference
axis, po='tive forward, y perpendicular to the vehicle plane of
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symmetry, positive to starbcard, and z completing a right hand

system, a view normal to the x-z plane is considered. If u, v,

w are the components of the vehicle velocity with respect to the

atmosphere in this body axis system

1
(

o = tan %) (160;

Figure 5,—Angle of Attack

Sideslip angle (B) is the angle between the velocity
vector and the reference axis when looking down on the vehicle
planform, that is along the z axis. In this case,

B = tan™% (L—’) (161)
X

o
%pv

Figure 6.— Sideslip Angle

Angle of attack and sideslip completely define the attitude
of ti2 vehicle with respect to the velocity vector. The third
zagle required to establish vehicle orientation in space is a
rotation about the velocity vector. This last angle, bank angle
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(Bp), will be taken as zero when the vehicle plane of symmetry
is vertical and the vehicle upright. Positive bank angle will
be taken as a positive rotation about the velocity vector, as

in Figure 7.

Vertical plane containing velocity

Vehicle plane of symmetry\

vertical when viewed along
the velocity vector .

By is the angle between tht/
aircraft z axis and the ﬁ

Figure 7.— Bank Angle

With the above set of angles to describe vehicle attitude,
the velocity vector known and a given atmosphere, the aerodynamic
forces can be completely specified.

Returning to the second source of vehicle force, gravitation,
from Newton's Laws, this is merely « function of position and
mass. It is, therefore, completely defined in terms of the state
variables and, hence, introduces no new control variable.

The final source of vehicle force, thrust from the propul-
sion system, involves the atmospheric properties, either due to
the atmospheric back pressure degrading the vacuum thrust or by
virtue of the atmospheric fluid used in the combustion process
which creates thrust. The propulsion unit efficiency may be
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affected by Mach number and, hence, velocity so that thrust
forces depend on the basic state variables of position and
velocity in a similar manner to aerodynamic forces. If the
propulsion system has a fixed orientation within the vehicle,
the control variables introduced to describe aerodynamic forces
suffice to describe thrust forces also. It may be, however,
that the propulsion unit has a variable orientation within the
vehicle. In this case, additional control variables to describe
the relative position of the propulsior unit with respect to
the vehicle are required. With vehicle attitude already spec-
ified by a, B and Bp, two additional angles are sufficient
to orient the thrust. These may conveniently be taken as the
cone angle from the reference axis, Ap, and the inclination
about the reference axis, ¢p. This latter angle will be
measured positively about the reference axis and be zero when
the thrust force is perpendicular to the port side of the veh-
icle plane of symmetry, as illustrated in Figure 8.

Figure 8.— Thrust Angles

One other control variable for thrust remains to be speci-
fied; this is the throttle setting, N, which serves to determine
the propulsion unit power setting on variable thrust engines.

In all then, to specify the forces acting on a point maes
vehicle with a single propulsion unit, six control variables,
®, B, Bp, Ap, ¢7, and N are required. If there is more than
one independently controllable propulsion unit, additicnal Ag,
¢r, and N must be defined.

43



Coordinates and Coordinate Transformations

Local geocentric-horizon coordinates.-— Components of
the planet-referenced acceleration are integrated tc obtain
the planet-referenced velocity components (Xe, Ye, 2%e). Vehicle
position in this coordinate system is determined by integration
of these velocities. Vehicle position ir the planet-referenced
spherical coordinate system will now be determined. The spher-
ical coordinates are longitude, geocentric latitude, and dis-
tance from the center of the planet. Angle "C" represents the
change in vehicle longitude and may be written

C =19 -8 (162)
Angle C is related to the vehicle position by the expression
- Y
¢ = Tan"! (ig) (163)
e

The relatiopships are illustrated in Figure 9.
NP

Local-geocentric
horizon coordinates

Figure 9.—Relation between Local-Geocentric, Inertial and
Earth-Referenced Coordinates for Point-Mass Problems

To describe body motion relative to the planet, a local-
geocentric-hovrizon coordinate system is employed. The Zg-axis
of this system is along a radial line passing through thé body
center of gravity and is pcsitive toward the center planet.

The Xg-axis of this system is normal to the Zg-axis and is posi-
tive northward; Y, forms a right~handed system. Figure 9 shows
the relation of tgis coordinate system to the other systems
employed.
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To locate the Xy-Yg-Zg axes with respect to the Xe-Yeg-Ze axes,
first rotate abdut Zo by an angle (180° + C) and then rotate
about Yg through the angle (90° - ¢1). The first rotation
defines the intermediate coordinate system shown in Figure 10,
The trancformation is given by

1y Cos (180° + C) Sin (180° + C) 1y,

iyg = | -sin (180° + ¢) Cos (180° + ¢) of |1y,

1z, 0 1z,

or

1y —cos ¢ -stnC o] |iy

lYg =] 5in C -Cos C O EYe

b 0] 0 1 19

ize e (164a)

The second rotation is shown in Figure 1l. The transfor-
mation matrix for the second rotation is given by

Lxg Cos (90° - ) 0 -5in (90° - ¢p)| |1k’
=] o 10 Iy,
izg Sin (90° - ¢;) O Cos (90° - ¢p) ize
or
ixg Sin ¢, O -Cos ¢, '
iYB = 0 1 0 JYS
Iz | |cos &, o sin op,| |1z, (164b)
xl
180°+ %
///’— ‘z:::ﬁfggL—-
— ) 3
\1 Ye
r 4
“ Z,
. woordinate System Transformation  Figure 11~ Final Rotation in Transformation from

~ ., red s Local-Geocentric Coordinates  Earth-Referenced to Local-Geocentric Coordinates
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In this analysis, a positive rotation is defined in the
sense adopted for vector cross products in a right-handed systen.
That is, a positive rotation about the z-axis occurs when the
X-axis rotates into the y-axis; positive rotation about the
X-axis when y-axis rotates into the z-axis; and positive rota-
tion about the y-axis when the z-axis rotates into the x-axis.
The intermediate coordinate system (X', Z ) is eliminated
by the met nd of successive rotation. Tﬂ% complete transfor-
mation is given by

ng Sin ¢;, 0 -Cos ¢y -Cos C -Sin C lxe
lyg = 0 1 0 Sin C -Cos C lye
1z, | [cos o 0 sin e 0 1z| (165)
This can be reduced to the single transformation matrix
|ixg -Sin ¢, Cos C -Sin ¢r, Sin C -Cos ¢r. | |1x,
|1Yg =| Sin C -Cos C 0 ly,
llzg -Cos ¢1, Cos C =-Cos ¢1, Sin C  Sin ¢g, 1z, (166)

which defines a direction cosine set (1, j, k) by the equation

1xg hh o kK 1xg
Iy |= e J2 k| |Ty,
lz8 13 J3 k3 lze

(167)

Flanet referenced velocity in the local-geocentric coordinate
system is given by

Xg 1, 4 k| |X
Yg = 12 J2 k2 Ye
Zg i3 33 k3 Ze (168)
and
_ > > 5
Vg \/x8+ Y8+Zs. (169)
Flight path angles. are computed by
-1 {Y
= t g
0T e (—x—-) (170)
&
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and Yy = Sin-l (:Z_S)
v
8 (171)

Here 0 is the heading angle and )X is the flight path angle.

Wind Axis Coordinates.— Aerodynamic and thrust forces
for point-mass problems are c¢ -eniently summed in a wind-axis
coordinate system, (Xp, YA, Z, ). Since the equations of motion
are solved in (Xe, Ye, Zg) cocrdinates, the wind-axis components
of force must then be resolved into this basic system.

When winds exist, defirned by atmospheric velocity compo-
nents along the local jeocentric axes, vehicle velocity rela-
tive to the atmosphere is the vector difference of vehicle
geocentric velocity and wind velocity. The wind axis sysiem
is then determined by the vehicle airspeed, Vp, and the flight
path angles relative to tlLe atmosphere Ap and op. If wind
velocity is zero, Vpa = Vg, Aa =X and o0pa = 0. If there is
a wind, with velocity components (ng, ng, Zgw), then

. " 2 . . 2 . N 2
Va =W (k02 e (gt 0% s (32 ) (172)
YA = sin—l [—().(g—}.(gw)/VA] (173)
- _1 . . . .
Oy = tan [(Yg-ng)/(Xg—ng)] (174)

Forces are first resolved from wind axes to the local
geocentric coordinates. The wind axes are defined ;elatlve
to the local geocentric axes by three angles: heading, 0Oa;
flight path attitude, Aa, defined above; together with angle,
BAO

Figure 12.—
Relationship between Local-Gencentric Axes and Wind Axes
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Appropriate transformations are

]
X cos o, sin op 0 Xs
X Ytj)j= |-
2 sinoA cos oy O Yg
‘ Z 0 (175)
v X g 0 1 Zg
g
X .
_ XA' Xp cos v, 0 -sin y, X'
\ Y'|= 0 1 0] Y!
(176)
. AR 0 YA

sin vy, cos vy,

and
Xa 1 0 0 Xp
zA — \\BA Yol =] O cos By sin By Y:'
. Zp 0 -sin By cos By Z (177)
77 LA

The complete transformation from local geocentric horizon coor-
dinates to wind axes then is

Xy cOos y,cO8 O, cos yAsin o -sin Yy X

A g

Yol _|-sin opcos By . cos 0 cos 1.3A ' cos yasin By | | Y,
= + sin yycos 0,sin Bp + sin y.sin g, sin Bp

Zy sin opsin By -cos opsin B cos Y,cos Bp Zg
+ 8in ypcos gpcos By + sin ypsin gjcos By

which defines a direction cosine set

Xa T S ty Xg
Y, | = |* 52 t2] | e
Za r3 53 t3| | Ze (179)
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The resolution of forces from wind axes to local geocentric then
becomes

g r) 2 r3| | #x,

g 1 82 83 ’YA

) t t

I R (180)

For the rotating-planet, the local geocentric components must
be resolved into the Xg-Ye-Ze system. The required direction
cosines are given by Equation (168)

FYe = Jl J2 J3 FYE

The combined transformation from wind axes to local geocentric
can be defined as a single matrix transformation

A ey,
By |7 1m2 P2 P31 Fep | * | may
e

Body-axis coordinates.-- Origin of this system is the ve-
hicle center of gravity with x-axis along the geometric longi-
tudinal axis of the body. Positive direction of the x-axis is
from center of gravity to the front of the body. The y-axis is
positive to starboard extending from the center of gravity in
a water-line plane. The z-axis forms a right-handed orthogonal
system. To permit the use of body (x, y, z) axes aerodynamic
data, and to convert the body axes components of thrust to the
wind axes system, a coordinate transformation must be riade. The
coordinate transformation shown in Figure 13 involves rotation
first through angle of attack, o, then through an auxiliary
angle, B'. Noting that

tan B' = % cos o = tan B cos a (183)
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\j
tan B'= " tosa=1an S cosa

Figure 13,— R:lationship Between Body Axes and Wind Axes
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the transformation is

'x’ cos ¢« O sin a X
y'j=10 1 0 Yy
z' -sina O cos a A
XA cos B' sin B' 0] x!
Yp |= |-sin B' cos B' O y'
Zp 0 0 1 7!
= |cos B' cos a sin R' cos B' rin ¢ !x
-sin B' cor @« cos B' -sin B' sirn a\ Ng
. (184)
=510 O 0 Ccos @ \ iz
which defines the (u, v, w) direction cosines
XA ul Uy ug b l
YA = Vl V2 V3 yl
af M w2 v3 ||z l (185)

which define the force coefficient trans formation

!

-Cp| vy Uy 43 || -Cp
Cy) = vl Uy usg Cy
-CL, vy v w3 ' -CN (186)

The relationship between body and wind-axes aerodynamic ccef-
ficients is now established. Note the negative directions of
the coefticients rclative to the axes,

Inerti;i <oourdinates.-- The selected jnertial coord.nates

coincide w.ch 1 .e earth refecences ‘Xg, Yo, Ze) syster at time
zero. At a la.er time ti.ey differ by the rctation of che earth,
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wpt. The transformation between inertial velocities and planet
referenced velocities is derived as follows.

Let R be the displacement of the point-mass, (See Figure 9).
In inertial coordinates

R = xIx + YIy + 21, (187)

and

R =X1x + ’.Yiy + 2Iz

\'

(188)
In planet-referenced coordinates

R=x1y + Yel + Zol

e Xo ey, ez,

However, due to the rotation of the Xar Ya! e coordinate system,
the velocity is

+ 5 xR 189
w, X ( )

V=§::

S

where
+ ieiye + éeize (170)

The planet's rotation is about the Z-axis which i: also the Zg-
axis. Therefore,

ap = -wply = —wplze
and the required cross product is

¥, ly, 1z,
p» 3=|0 0 ~on | = (Yewy )iy, - (Xewp)ly,
X Y z
e e e (191)

If Equaticns (188), (190), and (191) are substituted into
Equation (189), it follows that

X1 Yiy + 21, = (X + I Y. - Iy + (Ze)l
(192)
The relation between the unit vectors in the inertial system

and unit vectors in the planet referenced system are obtained
by a single rotation about the Z-axis.
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The transformation matrix is

lxe Cos mpt ~Sin wpt 0 1y
1Ye = |3in wpt Cos wpt 0 ly
iz, 3 0 115,

(193)

The transformation from planet-referenced velocities to inertial
velocities is made with the inverse of the matrix of Equation
(193) and the component relations derived in Equation (192)

X Cos wpt Sin wyt O Xo + upYe
Y= |-5in wyt Cos w,t 0 Yo - pre

A 0 0 1 Ze (194)

The components of inertial velocities are used to calculate the
inertial speed of the body as

°2 ‘2 ‘2
VIzJ;+Y + Z (195)

Equation (195) is valid regardless cf the inertial coordinate
system involved.

Local-geocentric to geodetic coordinates.-- Positions on
the planet are specified in terms of geodetic latitude and
altitude (for a given longitude) while the motion of the body
is computed in a planetocentric system which is independent of
the surface. 1In the computer program, flight-path angle A
and heading angle 0 are calculated with respect to the local
geocentric coordinates. By definition A and op azxe angles
measured with respect to the local geodetic. Although the
maximum difference that can exist between the two coordinate
systems is 11 minutes of arc, it may be desirable to know Ap
and op more accurately than is obtained when measured from
the local geocentric.

It will be necessary to resolve the geocentric latitude
to geodetic latitude for an accurate determination of position.
Figure 14 presents the geometry required for describing the
position of a point in a meridian plane of a planet shaped in
the form of an oblate spheroid.
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Figure 14.— Planet-Oblateness Effect on Latitude and Altitude

It 1s apparent from this figure that the most significant
difference between the geocentric referenced position and the
geodetic position is the distance AB on the surface of the
reference spheroid. The distance can be defined by a knowledge
of the angle ¢1,; the geocentric latitule; ¢g, the geodetic
latitude; the corresponding radii; and the distance OC.

The relationship between the geocentric and geodetic lati-
tude of a point on the surface of a plaret which is an oblate
spheroid is obtained as follows. The equation for the surface
in a meridian plane is

Rp2 (196)

The tangent of the geodetic latitucde can be found by determining
the negative reciprocal of the slope of a tangent to this ellipse.
The expression for this tangent is

2
1 ) Re® Zp
Tan ¢, = - 37(7) = - = (197)
St 2 x
X |y Rp~ X

Note that ZB is a negative number in the northern hemisphere.
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The tangent of the geocentric latitude of point B is

Tan ¢L = . ZB

® Xy

Substituting Equation (198) into Equation (197) gives the
required relation

(198)

R2
Ten 9g = ©_ Tan oy,
Rp2
The expression for the radius of the planet at point B in
terms of the geocentric latitude of the point and the equato-

rial and polar radii is obtained by the rectangular to polar
coordinate transformation

(199)

-Zg = Ry Sin ¢,
g & (200)

Xp Ry, Cos ¢L
LS g

(201)

and, soj}ving for Ry, by substituting Equations (200) and (201)
into Equation (196)*~g gives

ReRy
- : 2 2
R¢Lg = {Rp? Sin® q,Lg + R.S Cos ¢Lg
(202)
- cos ¢ - s
cos ¢§ Re/v [(Re/Rp)(tan ¢Lg/t&n ¢L)] 51n2 ¢L + cos ‘L
'y

It may be seen from Figure 14 that

F'P' = 0P’ - OB (203)
or

h sin ¢, = OP sin ¢f, - chLg sin g (204)
Likewise

B"P" = 0P - OO (205)
or

h cos ¢g = OF cos ¢p, - R‘Lg cos ¢Lg (206)

If Equation (204) is divided by Equation (206) and then the
quotient is divided by tan ¢Lg,there results



(ta.n ¢g - (sin cos ¢y
= [0P (=——=)-R / [0P (——— ) - R
oy, - (% G d,) T o] (o7 ¢Lg) e o)
or
cos ¢, cos ¢y,
2 = 2 2 2 e
(RG/RP) (cos ¢Lg) B (Sin ¢Lg) ' [(Re i Rp )/Rp ] [R%S/OPJ (208)

Finally, if Equation (208) is multiplied by (Rp sin ¢Lg)/
(Re sin ¢1), it follows that
Re

Rp 5 Re
(ﬁ;) (tan ¢’Lg/te.n ¢L) = (g) +[1 - (Rp/Re) ] (m—r) (RM.E/OP)(ZOQ)

sin ¢

Let

(=]
[}

(R, tan chg/Rp tan ¢;)

(Rp tan ¢,/Re tan ¢;) (210)
Then it follows from Equations (202) and (209) that

R . .2 2 2
U= (ﬁn) + [Re/OP] {U/ { U2 sin ¢L + cos ¢L] [l - (Rp/Re) ]

(211)
e
Equation (211) is solved by an iterative scheme.
‘then _1 R, U

The flight-path and heading angles corrected to the local
geodetic latitude are computed by

-2 - i ik (6, -
Yp = sin~! (—v—gl) = sin”™t ( g ~ttgltg ¢L)})
gy VS

{213)

Since the magnitude of vector Vg is equal to the magnitude of
vector Vgl

and .
- Y !
OD = Sin 1 5 £ 5 = Sln- / __————-s___é—"—':\
Vg "+ Y VXg + Zglog - ot? + ¥y /
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Auxiliary Computations

In addition to the computations which can be made from the
problem formulation as presented in preceding sections, several
other quantities are available as optional calculations.
a. Planet-surface referenced range, Rp
b. Great-circle range, Rg
c. Down- and cross-range, Xp and Y-
d. Theoretical burnout velocity, Vijeq
e. Velocity losses, Vp, Vgrav' Vp, and VML
f. Orbital variables and satellite *:.rget

Planet-surfaced refe-enced range.-- The total distance
traveled over the surface of the planet is computed as the

integrated surface range. If the distance traveled by the
vehicle over a given portion of the trajectory is

to
Ry = f Vg dt (215)

*1

then the curvilinear planet surface referenced rxage is
t2

Ry = / Rop, Vg Cos y dt (216)

R

1

The flight-path angle, A, is referenced to local geocentric
coordinates for this computation.

Great-circle range.-- Great-circle distance from the launch
point to the instantineous vehicle position, Ry, may also be
required. Expressions for this distance are dérived as follows.

By spherical trigonometry, (see Figure 15)
)
Cos %q’ = Cos (90-¢L)Coe(90-¢Lo) + 31n(9o-¢L)51n(9o-¢L°) cos(eL_eLo)

or simplifying (217)
\Cos %f = Sin ¢, Sin ¢L° + Cos ¢ Cos *Lo Cos (eL-eLo) (218)

Therefore,
Rg = R' Cog'1 [Sin $1, Sin ¢L° + Cos ¢ Cos ¢L° Cos (eL-eLo)] (219)
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Figure 15.—Great-Circle Range

However, since the planets are generally oblate spheroids, R'
is not a constant radius. An approximation may be obtained by
averaging the planet's radius at the launch point and at the
vehicle's position. Therefore, define the average radius, R',
as

Rl = R¢L + R¢Lo
> (220)

and the surface-referenced great-circle range from the launch
point to the vehicle is

R4, + R
¢ ¢ -
Rg = L Lo Cos 1 [Sin¢L Sin ¢Lo + Cos 4>L Cos ¢Lo Cos(eL-eLo)]
2 (221)

Down- and cross-range.-- Down- and cross-range from the
initial great circle can be determined. The initial great
circle is determined from the input quantities o5, ¢L,, and
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oL (see Figure 16) Then the cross range of a particular
trQjectory point is defined as the pe pendicular distance from
the point to the initial great circle. The downrange is then
the distance along the initial great circle from the initial
point to the point P at which the cross range is measured. From
the spherical triangle, Figure 16, the great circle range LF to
the point F is computed by Equation (221).

The right spherical triangle LPF is solved for the down-
range, X, and the cross range, Yp.

Xp = R cos' L Cos LF (222)
Cos (sin~1(sin LF sin £))
Yp = R' sin" (sin LF sin £) (223)
where
E=¢ -0
° (224)

R' is defined by Equation (220)

initial
great circle

LF = Great circle range, Rg
from initial point L to
point F.

Figure 16,—Downrange and Crossrange Geometry
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Theoretical burnout velocity and losses.-- For trajectory
and performance optimization studies, it is convenient to know
the theoreticel burncut velocity possible and the velocity
losses due to gravity, aerodynamic drag, and atmospheric back
pressure upon the engine nozzle. These quantities may be com-
puted as follows:

Theoretical Velocity

to

v Tyac
theo - dat

ty (225)

Speed Loss Due tc Gravity

2

Vgrav = -gzg Sin y 4t (226)
1

Speed Loss Due to Aerodynamic

Drag
5 (227)
VD = D dt
m
1
Speed Loss Due to Atmosphere
Back Pressure Upon the Engine Nozzle (228)
t2
PAe
VP = - ——m dt
51
(229)

Maneuvering Losses

to
T - PA
VAC
VML = / (__T_i) (COS a - l) dt.

t1
The resultant velocity V'(tz) ig obtained by adding the components
computed to the initial value Vé(tl)

' L]

The maneuvering losses are valid only if Ap is zero fer the
engine.
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Orbital variables and satellite target.~-- Certain functions
of use in orbital trajectory calculations have been added to the
point mass equations of motion used in the Steepest Descent Opti-
mization Program. These functions permit the specification of
terminal conditions in inertial space when this is convenient. A
further set of functions will permit rendezvous calculations with
a satellite in a circular orbit about a central planet.

Orbital variable calculations commence immediately after
the calculation of vehicle inertial velocity. Flight path
angles in inertial space are computed from the expressions

eug-L Yg+up|R|cos¢L \
¢ Sl e / (231)

;
= sin™L _.é_) (232)
bvql

The inclination angle, i, s the angle between the plane con-
taining the velocity vector and the center of the earth, and
the equatorial plane.

Equatorial plane

Figure 17.— Orbital Plane Geometry
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Applying spherical trigonometry to Figure 17, we obtain the re-
lationship

cos i = cos ¢, sin o (233)

I

The difference in longitude between the vehicle and the ascending
rLode, v, is given by

tan v = sin ¢y, tan o (234)
The inertial longitude is given by
6; = 6, - wpt (235)
and the inertial longitude of the ascending node by
Q=6 - v (236)

It is convenient to know the central angle, u, in the orbital
plane. Measuring from the ascending node, we obtain
tan ¢L

— et

cos O (237)

tan u =

The orbital variable calculation introduces positional and
velocity information from a second body. This body is a satel-
lite considered in a circular orbit about the earth. Its orbital
height, hg, is specified and remains constant. Position in the
orbit is computed from an initial central angle, bsq - by the
expression

9s = 95, * wgt (238)

The satellite angular velocity is obtained frum the setellite
inertial velocity, Vege Where

u
Veg = V?—s_ynems (239)

where ug is the gravitational potential constant and Re the
earth radius. 7T+ should be noted that Egquation (239) assumes
a spherical earth; for the earth radius is taken as constant,
and none of che higher order gravitational harmonics are in-
cluded. Knowing Vcs' it follows that

v
w, = Cs

S Rg+hg (240)

The variables of this section provide sufficient information to
2ither rendezvous with or terminace tie trajectory in a speci-
fied position relative to the satellite.

62



VEHICLE CHARACTERISTICS

Methods by which the aerodynamic, propulsive, and physical
characteristics of a vehicle are introduced into the computer
program are presented ir :his section. Form and preparation of
the input data are discussed, together with methods by which
stages and staging may be used to increase the effective data
storage area allotted to a description of the vehicle's proper-
ties.

Aerodynamic Coefficients

The primary objective of the aerodynamic data input sub-
program is to provide for a complete accounting cf the various
contributions to the aerodynamic forces and moments regaadiess
of the flight conditions of the vehicle being considered. Two
techniques are available for use in the digital computer pro-
gram: (a) an n-dimensional table look-up and interpolation and
(b) an m-order polynomial function of n variables prepared by
"curve fit" techniques. In the first method, the proper value
for each term is obtained by an interpolation in "n" dimensions
where the number of dimensions is taken to be the number of
paramete-s to be varied independently plus the dependent vari-
able. 7vhis method has the advantage of accurately describing
most non-linear variations with reasonable preparation effort.
The amount of storage space which must be allocated to such a
method, however, can achieve unreasonable proportions and may
require substantial computing time for the interpolation as the
number of dimensions are increased. The second method has essen-
tially the opposite characteristics; that is, a large amount of
data may be represented with a small amount of storage space,
and computation time is held to reasonakle limits, but the data
variations which may be represented must be regular. A substan-
tial amount of effort can be required for the preparation of
data by a curve-fit technique. Both these methods are very con-
ve_.ient when the amount of data to be handled is moderate, but
tend to become unmanageable when large amounts of data are
required. This usually occurs when the program, having several
degrees of freedom, is committed to one or the other of these
two techniques. Therefore, the computer program incorporates
both of the techniques discussed as a compromise to take advan-
tage of the more desirable features of both. To do this, a
general set of data equations have been programmed which define
each of the aerodynamic forces. 1In general, the coefficie.ts
for these equations will be obtained from a curve-read inter-
polation. Several simplifications may be made to the equations
depending on the flight condition and vehicle to be considered.
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Often the particular application will not require some of
the terms listed in order to describe the flight path and vehicle
under consideration. The subprogram is arranged so that the com-
puter will assign a constant value to any curve for which the
data has not been supplied. For most curves, the constant value
wili be zero. This technique may be used to reduce the time
required for the preparation of data. Values intermediate to
those introduced in a tabular listing will be obtained by linear
interpolation.

Aerodynamic Forces

Aerodynamic forces are customarily defined by three mutu-
ally perpendicular forces. These are lift (L), drag (D), and
side force (Y). Lift force is perpendicular to the velocity
vector in a vertical plane; drag forc:e is measured along the
velocity vector but in opposite direction; side force is meas-
ured in the horizontal plane, positive toward the right, pro-
vided the bank angle is zero. If the bank angle is not zero,
L anéd Y will be rotated by -Bp about the velocity vector.
Coordinates are shown in Figure 18.

-~
-~

-~
N e e -

Figure 18.-— Aerodynamic Forces - Wind Axes

These forces may be expressed in the form

L = qV,n) sC(V,h,a,B) (241)
D = q(V,h) scp(V,h,a,B) (242)
Y = q(V,h) SCy(V,h,a,B)

(243)

where q is the dynamic pressure and S a convenient reference
area. The aerodynamic ccefficients Cp, Cp, and Cy nay be ex-
pressed in terms of the aerodynamic derivatives.
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(246)

Alternatively, the aerodvnamic derivatives may be expressed
as tabular functions of Mach number (My), o, and 8, that is,
functions of the state variables and the control variables.

On occasion, it may be convenient to measure the aerodynamic
forces in the body axis coordinate system introduced in a pre-
ceding section, pages 49 to 51. In this case, normal force, (nf),
is measured along the -z axis, side force (y) along the y axis,
and axial force (a) along the -x axis, as in Figure 19.

(g

(ﬂf)

b 9___,

P e - —— -
N O o o - -

Figure 19.— Aerodynamic Force in Body Axes

The specification of forces in the body axis system is
similar to that in the wind axis system

neg = qSCN (247)
a = gSCy (248)
y = a8G (249)
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where the body axis aeroaynamic coefficients are
Cx = Cy, + Oy, *Cn2 alaf

CNB|8| + CN82 32 + CNGB a |8|

+

- (250)
CA = CA + CAG'GI + CAa2 a

+

cABlel + Cp2 82 + Ca, g |as|

Cy = Cy, + Cyu|a| + qu2a2 (251)

Cyg8 + Cyg2 8]8| + Cy y lals

+

(252)

Thrust and Fuel Flow Data

The techniques employed to introduce thrust and fuel-flow
data into the equations of motion are developed in an approach
similar to that employed for aerodynamic data. An n-dimensional
tabular listiag and interpolation techuique is used with the
independent variables being defined by the type of propulsion
unit being considered. For the present formulation, the propul-
sion units are grouped into the following options: (1) rocket,
(2) air breathing engine.

Propulsion opi.ion (1) rocket.-- The thrust of a rocket
motor 1s assumed variable with stage time, altitude,and,if the
rocket is controllable, it will also vary with throttle setting.
The altitude effect is determined by the exit area of the
nozzle, A,, and the ambient pressure, P. If the thrust is
specified for some constant ambient air pressure, the altitude
correction can be calculatud within the subprogram. If the
rocket motor is uncontrolled, the vacuum thrust, in pounds, will
be introduced by a tabular listing as a function of time, in
seconds, and corrected as follows:

T =Max [T -PA, O] (253)

The propellant consumption rate is specified by a tabular

listing in slugs per second as a function of time,in seconds,

for the single engine options, or computed from the thrust and
tl.e engine specific impulse, Igp, for the multiple engine options.

If the rocket is contrulled, the propellant mass flow rate mf
is introduced by a tabular listing as a function of throttle
setting. The thrust is *len specified by a tabular listing as
a function of mass flov rate.
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Propulsion option (2) air breathing engines.—aAn air-
breathing engine 1is stirongly affected by the environmental
conditions under which it is operating. Engines which would
be grouped in this classification are turbojets, ramjets,
pulsejets, turboprops, and reciprocating machines. The param-
eters considered significant in the program are

(a) Altitude (h-ft)

(b) Mach number (MN)

(c) Angle of attack (a-degrees), and

{¢) Throttle setting (N-units defined by problem)

Both the thrust and fuel flow are functions of these variables.
In order to accommodate these variables, a five-dimensional
teoular listing and interpolation are used to obtain both thrust
and fuel flow. The thrust has no further correction as the
-ffects of all parameters are assumed included in the interpo-
lated value.

Engine perturbation factors.—The engine options include
provision for two data scaling factors for use in parametric
studies. These are in the form

T = €13 Tyac * €14 (254)

Components of the thrust vector.—The equations used to
reduce the thrust vector to its components along the body axes
are

T, = T cosip (255)

Ty = T 51nAT cosq)T (256)
and

T, = ~T s1nAT 51n¢T (257)

¢7 and Ap are defined and explained in the control variable
section.

Reference weight and propellant consumed.—Rate of change
of vehicle mass, m, i1s set equal to the negative of the total
mass flow rate, -my. m is integrated to give variation of
vehicle mass, m. The instantaneous mass is used in the compu-
tation of the body motion. The reference weight is obtained
by an auxiliary calculation

Wp = m(32.174) (258)
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The propellant consumed is computed as
mg = my, - M (259)

where my is a reference mass input equal to the initial vehicle
mass

Stages and Staging

A prublem common in missile performance analyses and
encountered frequently in airplane performance work is that
of staging or the release of discrete masses from the contin-
uing airframe. The effect of drupping a booster rocket or
fuel tanks is oftcn great enough to require that the complete
set of aerodynamic data be cha'iged. Configuration changes at
constant weight, such as extending drag brakes or turning on
afterburners, may also require revising the aerodynamic or
physical characteristics of the vehicle. Another use of the
staging technique is possible with the present computer pro-
gram which does not involve physical changes to the configu-
ration; this technique may be used to revise the aerodynamic
descriptors as a function of aerodynamic attitude or Mach number.
With this use of the stace concept, accurate descriptions of
the forces acting upon the vehicle may be maintained over wide
attitude ranges, if required.

68



VEHICLE ENVIRONMENT

The models for simulating the environment in which a

vehicle will operate are presented in this section. This
environment includes the atmosphere properties, wind velocity,
and the field associated with the planet over which the ve-
hicle is moving. The shape of the planet and the conversion
from geodetic to geocentric latitudes are also considered.
In the discussions which follow, the descriptions of vehicle
environment pertain to the planet Earth. The environmental
simulation may be extended to any planet by repiracing appro-
priate constants in the describing equations.

Atmosphere

The concept of a model atmosphere was introduced many
years ago, and over the years several models have been de-~
veloped. Reference 20 outlines the historical background of
the gradual evolution of the ARDC model. The original (1956)
ARDC model (Reference 20) was revised to reflect the density
variation with altitude that was obtained from an analysis
of artificial satellite orbit data. This revision is the
widely used 1959 ARDC Model Atmosphere and is the basic option
in the present program.

The adv..ntage of a model atmosphere is that it provides
a common reference upon which performance calculations can
be based. The model is not intended to be the "final "vord"
cn the properties of the atmosphere for a particular time
and location. The atmosphere properties are quite variable
and are affected by many parameters other than altitude.
At the present time, the "state-of-the-art" is not advanced
to the point where these parameters can be accounted for;
it may be several years before the effects of some parameters
can be evaluated.

1959 ARDC Model Atmosphere.-- The 1959 ARDC Model Atmos-
phere 1s specified in layers assuming either isothermal or
linear temperature lapse-rate sections. This construction
makes it very convenient to incorporate other atmospheres,
either from specificaticons for design purposes or for other
planets. The relations which mathematically specify the
1959 ARDC Model Atmosphere are as follows (Reference 21;
the 1959 ARDC Model Atmosphere is divided into 1l layers as
noted in the table below.
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Layer Hn-Lower Altitude Upper Altitude

~ (Geopotential) (Geopotential)

* Meters Meters
1 0 11,000
2 11,000 25,000
3 25,000 47,000
L 47,000 53,000
5 53,000 79,000
6 79,000 © 90,000
7 90,000 105,002
8 105,000 160,000
9 160,000 170,000
10 170,000 200,000
n 200,000 700,07

For layers 1, 3, 5, 7, 8, 9, 10, and 11, a linear molecular-
scale temperature lapse-rate is assumed and the following
equations are used:

.3048n
B = T+ .3053%73356755 Meters (260)

Ty = (Ty), [1 + Ky (Hgp - Hb)] oR (261)
T = TM[A - B tan-l (ESE]_):_.] °r (262)
P = By [l + Kl(Kgp - Hb) ] X2 Lb./Ft.2 (263)

~(1XK
p = by |1+ Kullg - &) (¥R swgefe.3

Vs = h9.021175(m)1/2 Pi./Sec.

8 [ T3/2 2 (265)
= - - . S .
4 2.269681 x. 10 Lm] Ft / ec

(266)

For the isothermal layers 2, 4, and 6, the following changes
are made

P= pyeX3(Hep-t) (267)

o-K3(Hen-Hy)

F= (268)
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Values of the temperature, pressure, density, and altitude at
the base of each altitude layer are listed below along with
the appropriate values Kl’ K2' and K3.

layer
Quantity 1 2 3 ) 5 6
Xy -.22556913 X 10°M 0 .13846580 X 10°* ) -.15920187 X 10-Y )
1 ) -5.2561222 0 11, 388265 0 -7.5921765 °
X3 0 .15768852 X 10-3 o .12086887 ¥ 10-3 0 .206234k2 X 1073
H 518.688 389.988 389.988 508.788 508,788 298.188
Py 256.2170 472.67599 51.975818 2.5150578 1.2180383 2.1082485 x 1072
op  2.376% X 10™!  7.0611078 X 107" 7.7643892 X 10”7 2.8803201 X 10" 1.3967125 X 107" h.11900k2 X 10°7¥
1 8 0 11000. 25000, ¥7000, 53000, 79000.
layer
Quantity 7 8 9 10 1
K .2MksBk) X 10°%  .88626910 X 10°%  .75M38123 X 1075 35071476 X 10°5 .22212914 X 10°9
8.5411986 1.7082397 3.M16MT9% 6.8329589 9.7613698
9 0 0 0 0 0
k) 298.188 406.188 2386.188 2566.189 2836.188
R 2.181756 X 1073 1.556k912 X 10 7.5608667 X 10 5.80m16ka X 106 2.9769746 X 10
op M.26)M856 X 109 2.232k2k X 1010 1.8458849 X 10732 1,33%7990 X 10712 6.1150607 X 10713
» 90000, 105000. 160000, 170000, 200000.

Values of the appropriate constants to be applied in the tem-
perature equation, Equation (262), are listed below.

Hgp (Kn) A B c D
0-90 1. 0. - -

90-180 .T5951115 17h16ko0k 220,000, 25,000,

180-1200 .93578678 27396592 180,000. 140,000,

U. S. Standard Atmosphers, "’ 32.--The part of the U.S.
Standard Atmosphere, 1962, belcow . kilometers geometric
altitude (295,276 ft. altitude) is defined in the same way
as the 1959 model--by the hydros!. cic equation and a piecewise
linear variation of temperature with geopotential altitude.
Equations (260) to (268) are, therefore, applicable with a
diffe-ent set of constants. These constants, based on the
published tabulation of atmosphere properties (Reference 22)
at the base altitudes, are presented below. The 1962 model
uses a different set of relationships above 90 kilometers.

These have not been included. The tables define 1962 model
properties between sea level and 295,800 ft. geometric altitude.
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Values of the temperature, pressure, density, and altitude
at the base of each altitude layer are listed below along with
the appropriate values of Kl, Y and K

3
Layer
Quantity 1 2 3 4
Ky -.2255877 x 107% 0 48012406 x 1075 .12199559 x 107"
Ko -.5255871 x 101 0 .328L44801 x 102 .12202470 x 10°
Ks 0 .1576958 x 10-3 0 0
Ty 518.67 389.97 389.97 413.10L
Py 2116.217 472.6812 114.3431 17.22518
oy .2377002 x 102 7061512 x 103 .1708202 x 10-3 .2i29209 x 10~%
Hy, | 0 10999. L7k 19999.191 3235k, 854
Layer
Quantity 5 6 7 8
Ky 0 -.7383899 x 1075 -.1572230 x 107% 0
Ko 0 -.1709562 x 10%° -.8602817 x 10 0
Ky .1262323 x 1073 0 0 .1891214 x 103
T L87.17 487.17 454,668 325.170
Pp 2.302550 1.226346 .3766873 .21064%0
oy .2753526 x 107> .1466:37 x 2072 4826665 x 10~6 .3773977 x 1077
Hp 47051.501 52042.023 61077.348 79192.936

Within the altitude range considered, T and Ty (Equation (262))
are equal.

Atmosphere limitations.-- The validity of the 1959 ARDC
model 1s limited to altitudes below 700 km; although the pro-
gram is arranged to extrapolate the relationships tc greater
altitudes, if desired. Extrapolation to greater altitudes is
accomplished by altering the cutoff altitude.

At an altitude greater than 2.6 x 106 feet, no calculations
are made, and the program sets kinematic viscosity, speed of
sound, pressure, temperature, and density to zero. At and below
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sea level the parameters, pressure, temperature, and density
are set to the values below. OQther terms are computed as normal.

Pressure = 2116.2170 Lb/Ft® (269)

Temperature = 518.688 °R (270)

Density = 2.37692 x 103 Slugs/Ft3 (271)
6

At altitudes between 90 kilometers and 2.6 x 10 feet, the
speed of sound is set to 846.50255, and kinematic viscosity
is set to 2.3519252 x 10~/ over density. Other terms are
computed as normal.

The 1962 model is limited to altitudes below 295,8000 feet
(90 kilometers). It is suggested that zero values be returned
above that altitude. At and below sea level, the sea level
values should be employed. When the atmosphere constants are
determined from the publ-‘shed tabulations at the base altitude,
the calculated vaiues at intermediate altitudes may not agree
with the tabulated values to the number of significant figures
in the tables. This has been allowed for in the 1959 model
by developing coefficients with the necessary extra precision
to give agreement between the nAalculated values and published
tables at all altitudes. The values calcuiated by the 1962
model are good to about four significant figures, which should
be adequate for most purposes.

Kinematic viscosity and speed of sound lose their physical
significance at very high altitudes, and are not normally
defined by model atmospheres above 90 hilomrwet=rs. The constant
values by the 1959 model oot.'on wece acdzd to provide data
required by the aerodynamic heating xoutine. The aerodynamic
heat.ing calculation should not be used with the 1962 model
option above 90 kilometers. The constant values of v and Vg
in the 1959 model will give reasonable values of Mach number
and Reyaolds number for use in the aerodynamics calculations
to altitudes somewhat above 90 kilometers, say 350,000 feet,

vabove which constant aerodynamic coefficients should be used.

Winds Aloft

The winds-aloft subprogram provides for three separate
methods of introducing the wind vector: as a function of
altitude, a function of range, and a function of time. This
facilitates the investigation of wind effects for the conven-
tional performance studies. The wind vector is approximated
by a series of straight line segments for each of the methods
mentioned above.
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Four options are used to define the wind vector in the
computer program. The three components of the wind vector
in a geodetic horizon coordinate system can be specified as
t. >ular listings with linear interpolations (curve ~eads)
in the following optious.

Wind options {(0).-- In t*is option the wind vector is
zero throughout the problem. This allows the analyst the
option of evaluating p=arformance without the effects of wind.
This option causes the winds-aloft computations to be bypassed.

Wind option (1).-- In this option the components of the
wind vector are specified as a function of time. Wind speeds
are specified in feet per second and time in seconds.

wWind option (2).-- The three components of the wind vector
are introduced as a function of altitude in this option. Wind
speed is specified in feet per second and aititude in feet.

Wind option (3).-=- In this option the components of the
wind vector are introduced as a function of range. Wind speed
is specified in feet per second and range in nautical miles.
Tre range utilized in this computation is the great-circle
range.

By staging of the wind option, it is possible to swatch
from one method @f reading wind Jata to another during the
computer run. Care must be exercised in this operation, however,
s the swisching wlll introdice sharp-edged gusts if there arc
sizeable differences in the wind vector from one option to
another at the time of switching. This effect should he avoided
except in cases where gust effects are kecing studied.

Gravity

This section presents the equations necessary for the
introduction of the gravity components into the equations of
motion. These components were determined by taking partial
derivatives of the gravity potential equation. The potential
equation adopted has been reconmended for use in the Six-
Degree-of-Freedom Flight-Path Study computer progusam by AFCRC.
Constants for the potential equation were determined from
References 23,24,and 25,

Spherical harmonics are normally used to define th2 grav-
ity potential field of the Earth, References 23 through 2¢,
Each harmonic term in the potential is due to a deviation of
the potential from that of a uniform spanere. In the present
analysis the second-, third-, and fourth-order terms are con-
sidered. The first-order term, which would account for the
error introduced by assuming that the mass center of the E:rth
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is at the origin of the geocentric coordinate system is assumed
to be zero. With this assumption

2 : K [ Re\" 1
u=§8[1+%(§£) Pg+§-(;°;)3P3*§6(R—e) P‘**"'J(zn)

where P2, P3, and P4 are Legendre functions of geocentric lat-
itude ¢L expressed as

P = 1-3sin? ¢
Py = 3sin ¢ -5 sin3 ¢
Ph = 3 - 30 Sina .L + 35 Sin,‘ ‘L (273)

The gravitational acceleration along any line is the partial
derivative of U along that line. At this point, it should be
noted that the three mutually perpendicular directions in the
spherical cQordinate system are identical (other than sign) to
those in the local-geocentric-horizon coordinate system which
is defined previously. Therefore, the acceleration in the ¢
direction is identical to ¢x_, and the acceleration in the R
direction is identiccl to ~9%g- Or in the equation form:

au 25 [ R s [ Re? ik [ R
gg, =- L=-¥|_= ——)P--— — Jp3-={-=2] P
('3 3R R 3 r3 2 5 gl 30 RS
4
J Re2 H Re3 K Re
*?[“g(g—)l’a*‘g(r P3+ mlrg) B (274)
X

R.\2
=RK; %(‘Ri) (—6 sin ¢L cos ¢L)

(275)

w

R
H e .
+ 5 (—R ) (3 cos ¢, - 15 sin? ¢, cos ¢L)

L
JE (e
30 \R

Collecting terms:

L
Ro )2 4K Re 3 K (Re)
ng =Eg. [1 +J(§e—) Py + T \r Py A Py | (276)
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where

o
W

5 sin ¢L cos ¢L
—-— - L] 2
P, = cos ¢ (1 5 sin ¢L)
o _ .2
P7 = sin ¢L cos ¢L (-3 + 7 sin ¢L) (278)

Equations (276) and (277) are used in the gravity subroutine
with the following values recommended for the constants:

by = 1.407698 x 10%8 f£t.3/sec.?

R, = 20,925,631. ft.

J = 1623.41 x 1076

K = 6.37 x 1078 (279)

It should be noted that these constants and equations per-
tain to the planet Earth; however, it is possible to use these
same equations for any other planet. For this reason, the
values of these constants is an input to the program so that
the applicable constants may be inserted for the planet under
consideration. Due to limited knowledge cf the gravitational
fields of other planets, it is probable that zero values would
be assigned to some of the harmonic coefficients when the pro-
gram is used for entry studies on other planets.

The above equations are applicable to a non-rotating planet
as the centrifuval relieving effects caused by thLe planet's
rotation are included in the equations of motion. 1In addition,
the effects of local anomalies must be added if it is desired
to make a weight-to-mass conversion based on a measured weight.
The program has the options of retaining the first, third, and
fourth order terms.
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WEIGHTING MATRICES

The perturbation constraint, Equation (5),limits perturbed
contrcl histories to the neighborhood of a time varying
"volume" lying in the neighborhood of the nominal trajectory.
At any time point in the control perturbation predicted by
steepest~descent analysis is directly proportional to the prod-
uct of instantaneous weighting matrix (metric tensor) inverse
and partial derivative magnitudes. This is readily apparent
in the unconstrained solution; for in this case, Equation (43)

reduces to {5‘,},; [w]‘l[G]'{"on}{D‘I:—; (280)

Now consider any point t' along the trajectories; Figures 20 and
21l in the two variable case;at this point the integrand of
Equation (5) defines an inclined ellipse in the (sy,, sq,!
plane. In the usual case, when off-diagonal weighting matrix
elements are zero, the principle axes of this ellipse parallel
the (sq,, s,,) axes, and the length of the major and minor

axes are inversely proportional to the weighting matrix diag-
onal elements (directly proportional to the inverse diagonal
elements).

Now the steepest-descent analysis presented earlier in
this report can be applied to the case of time pulses in the
controls at any time t'. This type of problem reduces the
analysis to an ordinary parameter optimization problem,
References 15 and 16 in the variables sy, and sy,. In this
case, the steepest-descent direction is clear, for it lies
along the line joining the ellipse center and the ellipse tan-
gency point to the local performance contours. Further details
may be obtained from Reference 15. It is clear, however, in
the case considered that by suitably chocsing the weighting
matrix elements at t = t', any descending direction can be made
that of steepest~descent.

In general, this behavior persists in the case of a time-
distributed control perturbation. A badly chosen weighting
matrix can either greatly inhibit convergence rate or,in an
extreme case, cause convergence failure due to the limited
accuracy of digital computation. Examples illustrating this
behavior in the parameter optimization case can be found in

Reference 17.

Some weighting matrix options available in the program
of References 1 and 2 are described below.
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Multiple Control Variable Optimization

The most insidious types of convergence failures are

those in which the payoff function fails to reach the optimal
value, while at the same time the terminal constraints are
achieved. This problem is prevalent among optimization prob-
lems involving multiple control variables when a unit weighting
matrix is employed. The reason for this behavior becomes
apparent from consideration of an optimization problem involving
two control variables, aj and a;, where the weighting function

W(t) is taken as the unit matrix and o; is consistently more
powerful than aj;. More powerful implies that a small change
in a; will produce a greater change in the payoff function
than an equal change in aj will produce for the type of per-
turbation of interest. 1In this situation, the greater control
variable perturbation will tend to appear in aj rather than aj.
The total perturbation in the first control variable over a
series of steepest-descent steps will, therefore, always tend
to be greater than the total perturbation in the second control
variable, provided aj remains the more powerful of the two
control variables, no matter how many steps in the descent have
been taken. Now, the total required perturbation in control
variables during convergence from the nominal trajectory to
the optimum trajectory is purely a function of the particular
problem under consideration and the nominal path cihosen. There
is no reason for supposing the total perturbation required in
the powerful control variable to be either greater than or less
than that of the less powerful one. It follows that when the
steepest descent process is presented with a situation in which
the converse is true, i.e., the weaker control variable re-
quires the greatest total perturbation, there will of neces-
sity be a high risk of false convergence.

The argument can be made more specific. First create a
measure of the total perturbation required during convergence
from the chosen nominal to the optimal solution for each con-
trol variable. Fcor example, this can be achieved by separately
integrating the absolute value of the perturbation required
along the trajectory, i.e.,

CARIREE

to

where
{A“i} * {“%ptimn} - {ainaninal} (282)

Total perturbation achieved by the steepest descent
method after C descents can be expressed in the form
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{Ei(C)} ) (283)

T C
s > 6a15(t)| at
to

J=1
Here éai-(t) is the perturbation of the ith control variable
in the ]ah descent at time t. Now suppose that the rth con-
trol variable perturbations are consistently greater than
the sth, by some order of magnitude P, so that

Sayy(t) = O(P) Bagy{t) (284)
Inverting this

5an(t) = 0(-P) Mrd(t) (285)

On substituting Equation (285) into Equation (283)

T C T c
a%4(c) = S I z dagy(t) | dt < S Z lo(-P) dor 5(t) l at
to ' J=l o J=l

or

T

C
3 | sargt | at (286)

to J=l
Monotonic Descents

5-1’3(") < o(-P) S

Consider the case in which the successive control vari-
able perturbations at any instant are monotonic as the number
of descents increases. From Equation (286) the total change
in the s®P control variable will always be P orders of magni-
tude less than that in the rth control variable, no matter how
many descents are made. In this case, dispensing with the
inequality in Equation (286)

T C
APg(C) = O(-P) S Z| 6ar3(t)| dt
to J=l (287)

The same remarks are true of Equation {283). On substituting
Equation (283) with i = r into Equation (287)

AF4(C) = o(-P) AF(C) (288)
That is, the total change in the sth control variable after C

descents depends only on the change in the more powerful con-~
trol variable and the ratio of their powers. 1In such a case,
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once the constraints are satisfied, the rth control variable
will approach its final history with regularly diminishing
steps. The final historg of the rth control variable may will
be near optimum. The sth control variable history will,of
necessity, be perturbed by smaller amounts on each successive
descent during this_period until it finally approaches its
limiting value of APg(=»). It follows from Equation (288) that

8Py(w) = 0(-P) APp(w) (289)
In general there is assurance that either
ad
APp( ) = &P, (290)
or
—— —*
AFg(w) = 8Py (291)

If the original total perturbation required in the sth
control variable, KF; . is P orders of magnitude less than
that required in the rth control variable, as it might be if
previous knowledge of the optimum history of the control
variable were absent. Convergence would tend to be at least
one order of magnitude worse in the weaker (sth) control
variable than the rth control variable.

If, on the other hand, the total perturbation required
in the sth control variable had been Q orders of magnitude
greater than that of the rth control variable, we would have

3F: = 0(Q) AF: (292)
Combining with Equations (289) and (290),in this case
APy(w) = 0(-P) APy = O(-(P+q)) AP: (293)

If the mean pertuirbos+ion obtained_in the sth control
variable history after *the descent is Aag, and that required
for convergence is Bas, then

—t
— dag

8 '-O(TQT (2594)

Now problemsg in which the control variable powers are
in a ratio of 103:1 are not uncommon in trajectory optimi-
zation. It is also fairly common to create a nominal trajec-
tory in which the weaker control variable has, say, ten times
greater total required perturbation than the more powerful one.
In such a case, from Equation (294),when convergence is com-
pleted, the weaker control variable may be practically unper-
turbed from the nominal history.
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In practice, the successive descents need not be monotonic.
It is, therefore possible for the weaker coatrol variable to
increase its total perturbation while the more powerful control
variable oscillates. However, it seems reasonable to assume
that the descent is "almost monotonic." 1In this sense, the
above analysis is "almost correct," and, hence, provides at
least a qualitative insight into the general behavior of the
steepest descent process with multiple control variables. It
should also be noted that the arguments of this section hinge
on the persistence of unequal control variable powers.

The possikility of failing to converge to the desired end
constraints is somewhat more remote than that of failing to
converge the payoff function. The dominant control variables
for the payoff function are very often the dominant control
variables for the constraints and, hence, will continue to Le
perturbed until the constraints are achieved. 1In addition,
the control variables usually need not be optimized to achieve
the end constraints. In any case, failure to achieve the end
constraints is immediately obvious, whereas the only reliable
method of checking the payoff function convergence is to obtain
the same result from as different and widely removed as nomi-
nal as possible or to apply a time dependent equivalent of the
topologically invariant warping of Reference 15.

Control Variable Power

Previously in this section the concept of control variable
power has been used; specifically this is a measure of the
ability of a control variable to influence the final value of
the payoff function.

It may be recalled from a previous section that the change
in payoff function is given by

cor § Donllolibor s Dot o} s

to

When considering changes in the control variables alone, the
second term can be ignored.

Suppose at time t' we create a pulse, i.e., a Dirac Delta
function of unit magnitude in each of the control variables.
The change in ¢ produced by these pulses will be

3(a8) =|rgqen | [ae)] {2} (295)

where {1} is a unit column matrix. The elements of the row
matrix A¢pG  indicate the effect of separate pulses in each
of the control variables. These elements will be referred to
as the instantaneous payoff function sensitivities, .t , Or

82



control impulse response functions with respect to performance

ls:(t)J - [xm(t)J [G(t)] 296)

These quantities measure the ability of a control variable to
affect the terminal payoff function when constraint changes are
not.considered. The instantaneous payoff function sensitivities,
(t), are intimately connected with the optimum control
variable perturbations. In the case of no terminal constraints
from Equation (43) the optimum control variable perturbation

{paf- + ["]-I[G]'{)““}J% (297)

Substituting Equation (296) into Equation (297)

{oa}- :‘[w] Yo }E (298)

That is, the optimum perturbation varies directly with the
instantaneous sensitivities and the inverse weighting matrix.
If the problem being investigated involves terminal con-
straints, it follows from Equation (43) and (296) that

{oaf - ¢ [“]1{{ out ~[o]Pve] [ {IM}}
DP? ld¢J[I¢,A

oo [1vo [W]“IW

L1 ] [va] [ {4}

These results suggest an approach to the problem of false
convergence. Since the problem is due to small perturbations
in weak control variables, an inverse weighting matrix based
on the control variable sensitivities may be employed to accen-
tuate the weaker control variables. Effectively changing
the basis of optimization from that perturbation having the
greatest change in ¢ for a given total perturbation magnitude
to that perturbation having the greatest change in ¢ assuming
all control variables are equally important and must, there-
fore, be perturbed by a reasonable amount.

(299)

When concerned with terminal constraint variations, the
above definition of control variable power may be modified.
In this case interest lies in control variable perturbations
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which improve the payoff function while providing a prescribed
change in the constraints. These control variable perturbations
may be either one of two components or "modes." The first mode
considered is one in which constraints undergo prescribed
changes with the minimum control variable perturbation possible.
From Eguation (299) this is seen to be when

(e = |av|[zud] {ov} (300)
with a corresponding mode shape of

o -BRLIDwl o) o

The second mode considered is one in which the payoff function
is improved while holding the terminal constraints cc-stant.
From Equation (299) this mode is given by

fsaz} - ; [w]-l{{ o2} - (o] Dova] [ frool}
DF%,
Ty -[ige] (] * 1T

which may be written in the form

s 1Yt} ol =22

Toe-LIyel [I-u]'1 {Tue} (303)

(o2}« o] ) L1 (6

Substituting pulse variations of this second type into Equation
(25a) and using Equation (296)

sae) - o] [1)2{+) -{83}}‘[1 >,

FORRTE VR 2 s #PY (305)

L DT et e

~1ree) (el ™ { Tue !

(302)

where

(306)

where sgw , the mixed control variable instantaneous sensi-
tivities, are defined by

DM R {3 (307,
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Substituting Equation (307) into Equation (303) we obtai..

AR ORCARY e J39)

Top -[Tea ) (0] { Tea !

From Equation (308) it follows that when the payoff
function is improved while leaving the terminal constraints
unaltered, the control variable perturbations at any point
will vary directly as the product of the inverse weighting
matrix and the mixed sensitivity matrix.

Equations (298) and (308) enable establishment of
rational methods for choosing weighting functions to insure
payoff function convergence. When limited to diagonal
weighting matrices to insure reasonable perturbations in
all the control variables, one need only increase those
diagonal elements of W™+ corresponding to the weaker control
variable elements cr decrease those corresponding to the .
powerful elements. Further, the elements of {s.} or{ﬂtq}
can be used to decide in which class a particular cocatrol
variable belongs at any instant. End point convergence could
be improved by basing W-l on G'iyq . Equation (301). To
date, this has not been attempteg.

By integrating the absolute value of the instantaneous
sensitivities over the whole trajectory, a measure of the

total control variable power is obtained. If the terminal
constraint variations are ignored

(e
aj

to
Jf the terminal constraint variations are held to zero

{S:\P}‘{Sjo I%:;l“} (310)

The elements of these column matrices will be referred
to as the integrated payoff function sensitivities.

s
a

dt} (309)

The integrated payoff function sensitivities based on
Equation (309) shoiLld approach zero at the optimum; those
based on Equation (310; do not, of necessity, approach zero.
Either form, in its own way, serves to measure the overall
ability of a control variable to affect the payoff function
and is, therefore, a measure of the control variable power
previously defined.

If there were perfect numerical accuracy in the steepest
descent process, the control variable histories would continue
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to be perturbed until such time as all the c:ntrol variable
powers as measured by integrated payoff sensitivities based
on Equation (310) were zero. In practice, this condition is
practically impossible to achieve; in fact, it is often dif-
ficult to reduce these control variable powers by more than
an order of magnitude when the weighting function is absent.
This, then, is the basic reason for the weighting function
matrix, for without one a2 high risk of failure to converge
the weaker control variables is present unless foreknowleage
of the required total perturbations A¥i* ir available.

It will generally be impossible to obtain the desired
total perturbations APi* directly, for to do *his would
require a knowledge of the optimum control vuriable history.
In lieu of this knowledge, make the assumption that the APl*
all have the same order of magnitude. Reascnable conver-
gence can then be assured by choosing weighting -.atrices
based on this assumption. Several such weighting matrices
based on the payoff function sensitivities will be described
in the remainder of this section; to date, only diagoial
matrices have been utilized in this manner.

Weighting Functions Based on Integrated Sensitivity

Choose a diagonal weighting matrix in the form,

[ &L g0

-t 4 Sa\lv
[wiiJ = M-+l Aii + Bii J.g_];—' -J_
Say (311)

where M is the number of control variables.

With equally powerful control variables, the unit matrix
is obtained witlh A;; = Bjj = 1, for then

1 1 +1\S¢
- _ET
!-wii " w1 | ll]

(312)

where S¢ is a typical sensitivity.

In the case of unequal sensitivities this form of the
weighting function will insuce that we have perturbations of
similar orders of magnitude in each of the control variables.
For example, suppose there are

r control variables with S¢ = O(R),
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s control variables with S¢ 0(s), and

t control variables with S¢ O (T)

then

¢
1+Zs

{&rp_(t)}"' __M—;%l {sﬁw (t)} (313)

Integrating
¢

T 1+ 75 ¢ é @
), Alsagerl o) ot s} { Sﬂi%“}
(2]

I'S

(314)

Partitioning the matrix according to the power of the control
variables and considering orders of magnitude

s¢ + Xs® (r+1)0(R) + s0(s) + to(T)
why 58 7 S - gy [ ol (o) o) )
s + 2s* rC(R) + s0(S) + (t+1) 0{T)

(315)

¢

where Sg, Sg, and S; are typical sensitivities of order R,S,
and T, respectively.

Suppose that R>>S and T, then

, (r +1)
St {léae(t)'} at ~ gi!)_ﬂ. o
o r

(316)

In the extreme case when there is one control variable of
O0(R) and several of 0(S) and 0(T), after the descent is

complete
&P, () ‘ 2
~ 1l
l;

AP (o)

(317)
&F (o)
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if the descent is monotonic.

In the absence of a weighting function in the same example,
from Equation (308)

ftag()} ~{s5y ()} 16
On integrating
o(R)
i flmaot} e = {0
° o(T)
(319)

so that the weaker control variables would be practically un-
perturbed in each descent provided the assumption of R>>S, T
is retained. On summing over the entire descent, it follows
that the total perturbation in the weak control variables
will be negligible compared to those in the powerful control
variables.

Weighting matrices based on the integrated instantaneous
payoff function sensitivities S® act in a similar manner by
emphasizing the first term of d8a,, Equation (303), instead of
the complete expression. It is 8ifficult to arrive at a
quantitative result similar to that of Equations (317) and
(303) for this type of weighting matrix. For the present it
must suffice to mention that several cases of false convergence
in the weaker control variables have been eliminated by the
use of this type of weighting function.

Weighting Function Based on Instantaneous Sensitivity

Suppose there is a single control variable o,, and that
the power of this control variable varies drastically along
the trajectcry. 1In region A of the trajectory, let the power
of a] be several orders of magnitude greater than in region
B. The greater perturbation will tend to appear in region A
and, should the discrepancy in control power persist through-
out the steepest descent convergence, the greater total per-
turbation will always occur in region A. However, the total
perturbation required in regions A and B are functions of the
nominal control variable histories created of the region of
interest and the problem at hand. Thereforr, once more a
false convergence can occur.

To be more specific, let regicn A be that region in which
to £ t < t' and region B be that region in which t' < t < T.
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Let the power of the control variable in region A be O(P)
greater than that in region B. In the absence of a weighting
function the perturbation mode which improves the payoff
function directly is proportioq?l to the mixed sensitivities
payoff furction sensitivity, 8-1‘ . Therefore,

‘aj(t)t<"~t' ~ O(P) JaJ(t)t-)tl (320)

where 6c;(t) is the perturbation at any point in the jth
cycle of the descent,.

Following the approach used previously, a W matrix can
be used which will tend to equalize these perturbations. For
example,

- s¢
[-wﬁ_ = l + GW max
B:W (t)
(321)

where sgw max 1s the largest value of sgw along the trajec-
tory (in practice use the maximum value of s$¢ from the
preceding descent). In this case

¢
~ S ay pax ¢ (t)
Ba(t) 1l + S gw (t) Sa¢ (322)

[ ¢
Let smp max be O(P) and let Sa¢ min be 0(Q).

At the point of greatest power

$a(t)pax ~ (2)(0(P)) (323)

and at the point of weakest power

sa (t)pgn ~ (1 + 8{%}) 0(Q) = 0(]) + O(P) 320

If P>>Q we, therefore,obtain

60m~2

Tauin (323)
Withcut the we jhting function

bamax . o(P-q)
Tooin - 26
nin (326)
Therefore, the solution will be limited to extremely
small control variable perturbations in region A, unless a
weighting function is used to alleviate the discrepancy in
contyol variable power in the two regions.

89



Combined Weighting Functions

In general, there may be several control variables whose
individual sensitivities vary drastically both with respect
to the independent variable and with regard to each other at
any instant. The variation with t“e independent variable may
be modulated by using the inverse W matrix which will
equalize the total sensitivity, i.e., the sum of the
ual control variable sensitivities, at each point along the
trajectory. A time varying term of the form

(% %)
Ay + Byj\ j= 4 max

- (327)

will achieve this effect.

The difference in sensitivity between the control vari-
ables at any instant may be equalized by utilizing a term
similar to Equation (311) with instantaneous sensitivities
replacing the integrated sansitivities

A
oe

E BQ*J
Cig +Dy3 J=1 Y
¢
8
"& J (328)

Combining Equation (327) and (328) and adjusting the
matrix so that with equally powerful control variables
throughout the trajectory, the unit matrix is obtained with
Ajj = Bij = Cij = Djj = 1, the inverse weighting matrix becomes

_ N, - ,
-1 ¢
(2 s'*J) ZJ ol
Wij| =] Ayq + Big\Jd=l max Cyy +Dyy J=L
et o
s «y
Y J 1
(329)
2 (M+1)

Equation (329) is the most general weighting function
obtained to date; it has been,utilized successfully with both
the¢mixed sensitivities, 8«¢ s and with the sensitivities,

8¢ . The first term in Equation (329) tends to equalize
differences in total sensitivity at different instants. The
second term tends to distribute the total perturbation at an
instant more equally between all control variables.
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STEEPEST-DESCENT STEP-SIZE CRITERIA

Application of the Steepest-Descent Method is reduced to a
routine computation once an automatic scheme or control system
for determining step-size has been devised. The present section
describes a step-size control system which has consistently pro-
duced convergence in the calculation of several hundred diverse
atmospheric trajectory optimization problems in the period since
1963. The control system is an integral part of the basic com-
puter program described previously in this report. This program
is limited to trajectories having all stages, except possibly
the last, terminated by a fixed value of independent variable,
time. The major principles of the control system apply to the
more general problem of optimal staging described in the multi-
stage analysis section of the present report.

A control system is basically a set of tests, maialy of a
logical nature, which determine a suitable step-size and, hence,
a control variable perturbation for each successive iteration.

It can be seen from Equations (35b) and (43) that a step-size is
determined when the control variable perturbation magnitude DP2,
the amount of each end point error to be eliminated, dwi, and

the initial state variable value perturbations, d8x(ty) @re speci-
fied. No further mention of the initial state variable value
perturbations will be made, as this type of perturbation has

not been included in the basic optimization program.

It might be thought r"ith the solution of Equatian 43 available
that the choice of step-size is a trivial problem. This judg
ment would be false, for the solution cf Equation 43 merely pro-
vides the optimal perturbation for a very small step: that is,
it is a linearized solution only. 1In converging to an optimal
trajectory, the analyst seeking to keep computer time expendi-
ture within reasonable bounds will require the use of as large
a step as possible. These large steps inevitably incur signi-
ficant differences between linearized predictions of system
behavior and the actual non-linear system behavior in the presence
of large perturbations. This can be simply illustrated by
considering the behavior of any one of the optimization functions,
f, the payoff function or any of the terminal constraints. For
an infinitesimal perturbation of the control variable, the linear
prediction of the change in the function based on the adjoint
method and the non-linear behavior, as determined by an actual
trajectory integration will be identical and

df (e) = Af(e) (330)
where df is the linear prediction ané Af is the actual non-linear

change. Both are functicns of step-size, which is assumed small
and denoted by €.
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As the step-size is increased, the difference between df and
Af will tend to grow progressively. For a large enough step-size
the lLinear prediction way cease to provide a reasonable guide to
the actual effect of the perturbation on the optimization function
and may, in fact, even be of the wrong sense. This behavior is
illustrated in Figure 22 for a payoff function being maximized.

Possible Types of
Non-Linear Variations

\

Figure 22.— Payoff Function Behavior Against Step-Size

Payoff Function Change

Step-size

Considering non-linear variations of the type denoted by the lower
of the two solid lines in Figure 22, the best step-size to use is
that resulting in the maximum payoff function change (Point A) ,pro-
vided this is the only function to be considered.

Since the linear prediction is available from the adjoint
equations but all non-linear changes require integration of the
trajectory equations, it is desirable to determine the maximum
change in payoff function with the least computational effort. At
Point A there is a considerable discrepancy between linear predic-
tion of and actual change in the optimization function. Limita-
tion of step size to a point such as B, where the linear and
non-linear changes are in close agreement, results in signifi-
cantly smaller step-size. If the payoff function was the only
optimization function to be considered, point A would represent
a reasonable upper limit on step-size, for any greater step-size
would reduce the payoff function change. 1If step sizes greater
than that denoted by C were to be taken, the payoff function would
actually be degraded rather than improved.

Figure 22 illustrates one of the major problems confronting
the analyst seeking to define a reasonable step size. Too small
a step, as at B, will produce an extremely well behaved conver-
gence, but an excessive expenditure of computer time results. Too
laroe a step, one significantly greater than that of A, results jp
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the linear prediction becoming
meaningless,and convergence, if it
does occur, tends to be erratic.
Again, this tends to cause excessive
computer time expenditures. The
problem is further complicated by

the fact that usually, instead of the
single optimization function of
Fiqure 22, the behavior of several
functions must be considered. For
example, with a payoff function and
four constraints, a typical problem
may encounter the changes illustrated
n Figure 23. In such a case it is
not clear what step-size is reasonable.
In view of the wide variety of be-
havior exhibited by ihe optimization
functions, the need for a control
system whish will make consistent

and logicel choizves of step-size.
becomes apparent.

In this section, it is assumed
that a single parameter can be chosen
to define the step-size and that for
small perturbations the predicted
changes in optimization functions
will vary linearly with this parameter.
For example, choose the parameter as
follows: let nominal values be available
for DP2 and {dy} and let these values be
denoted by DPZ and {dyo}. Now take a
parameter k toO determine step-size in
the manner

pP2 = k2 pp 2 (331)

{ay}l = k {dwo} (332)
If {S8agl}is the control variable his-
tory generated by the nominal choice
of step-size parameter k=1, then from
Equations (43) and (44)

{Gak} =k {6a°} (333)
and
d¢k = k d¢o (334)

It follows that the perturbations are
linear with the parameter k, as was
desired.
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Control System Philosophy

There are two philosophies which may be followed in most
complex decision-making situations. A person may attempt to
reach a conclusion directly by asking what is the correct course
to follcw, or indirectly by asking which courses are not to be
followed. The steepest-descent step-size control system follows
the latter course. The direct approach may at first sight appear
the more attractive method; however, it should be borne in mind
that it is usually easier tc determine which courses of action
should not be followed than it is to determine the particular
course of action which should be followed.

Major problems involved in the design of a step-size control
system are failure to converge and false converyence. The first
type of failure is immediately apparent, but the latter may be
difficult to detect. For example, suppose that a case involves
a single constraint which, after the first M iterations, has
effectively met the desired terminal value. If the constraint
value is not permitted to drift away from the desired value subk-
sequent perturbations will be small by virtue of problem non-
linearity. In a severe case, this will result in behavior easily
mistaken for convergence. On the other hand, by permitting the
constraints to drift off the desired value by means of an indirect
test, this difficulty may be avoided; this type of behavior is
illustrated by Figure 24.

In view of the above and similar types of phenomena, the
step-size control system has been constructed as a group of very
loose tests, in the sense that a set of almost obvious decisions
as to step-size magnitude lead indirectly to a choice of - ap.

Basic Control System Principles

Second Order System Behavior.— Each iteration commences with
a trial trajectory; this trajectory is distinguished from the
final trajectory of an iteration in that the computation of the
partial derivative matrices, F and G, is omitted. The computation
of these matrices usually requires somewhat more computer time
than the trajectory integration itself.

This trial trajectory is defined by a step-size parameter,
k, where k=0 denotes the previous final trajectory and k=1 denotes
the step-size magnitude used to obtain the trial trajectory.

On completing the trial trajectory, the non-linearities of
the payoff function and constraints are computed. These are non-
dimensional measures of the difference between the actual and
linear predictions of the change in these functions. The payoff
function non-linearity is defined below.
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Figure 24.—An Example of False Convergence
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bo = |A¢- e
NL ao

and the constraint non-linearities are defined as
v }, Ay - v 336
{vae = (336)

Here d¢ and dy denote the linear predicted change in ¢ and ¥, and
A¢ and Ay denote the actual change between the previous final
trajectory and the present trial trajectory.

(335)

From the previous discussion for a reasonable step in any
of these variables, the corresponding non-linearity must be
neither too small nor too great.

On completing the trial trajectory, an approximation to the
actual non-linear variation of the optimization functions with
step-size parameter k, can be obtained from Taylcr's Theorem by
making the assumption that the behavior of each function is para-
bolic. The three conditions defining each of the parabolic
variations are as follows:

k=0; 06 ,{Aw} -0 (337)
k=1; 46 =a¢, {A.p} ={A.p }o (338)
k =0; i@d:)_._d(g:) ,{g_ggl}gg%kgﬂ} (339)

The last of these equations follows from Equation (330). Equations
(337) and (338) define two points on a parabola; Eqguation (339)
equates the predicted linear slope at the first point to the para-
bolic slope at that point. Applying these conditions, the approx-
imate non-lirear variations are obtained as functions of k.

2
Ad(k) = é% - d%)k +d¢ .k (340)

{A\P(k)} = {(A\bo - dwo) K+ dy, k } (341)

Now, the value of k which will provide a specified non-linearity
in the payoff or constraint functions can be found. Substituting
Equations (340) and (341) into Equations (335) and (336)

¥
{xo } - { wﬁo } (342)

and
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and

¢
k¢ = _&_ (343)

¢NL°
That is, the desired value of k for each guantity is the desired
value of its non-linearity divided by its non-linearity on the
trial trajectory. A reasonable value for the non-linearity de~
sired can be obtained from the geometry of a parabolic variatiou.
Consider any of the parabolic approximations to the optimization
function £, as shown in Figure 25.

' 4
] / 7
8 P
3 7
3 PR
F 3"/
s ”
€ -
=
(=]

u—_ —

Step-size k

Figure .5.—Parabolic Variations

For a curve such as OAB, the maximum gain in the function occurs
at A,and if OAB is parabolic, the non-linearity is

. _ DA-DC _
vy © DC E (344)

Accordingly, a reasonable non-linearity for the pavoff function
allowing for the approximation involved is about.45. For the
constraints a more conservative value of .3 can be employed. If
the curve is of the nature of OE, these values still provide a
reasonable step-size guide. With these assumptions, the step-~
size parameter which gives the desired non-linearity for each
function by use of Equations (342) and (343) can be computed. A
basic principle of the step-size control system is to base the
step-size on the optimization function having the largest k. I1f
all the desired non-linearitics were equal, this would be equi-
valent to conirolling step-size with the function exhibiting the
most linear behavior. Additional trial trajectories are made
when the resulting k<.5 or »2, due to the increased possibility
of the parabolic assumption being in error if it is either extra-
polated or interpolated too far. For example, consider Figure 26
where an interpolation from a trial value causes a reduction in
f(k) rather than an increase. Similarly, in Figure 27, an
extrapolation has the same effect. It may be noted from Equations
(332) and (334) that the trial trajectory corresponds to a k=l.
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If the largest computed k is less than .5 then take another trial
trajectory with k=.5 and repeat the above logic. Similarly, if

k is greater than 2, a trial with k=2 is _ndicated; however,
before making such a trial, the control system proceeds to various
other tests which may reduce the value of k; these tests will be
described later.

True non-linear
pehav’or

fk)

Actual value at
predicted step

—Assumed parapolic variaton

Figure 26.—Danger of Parabolic Interpolation
L

A ” - Assumed parabolic
R variation

Q
S
7z Predicted step
-

ftk)

True non-linear behavior

4

10 k ?— Actual value at
Figure 27.—Danger of Parabolic Extrapolation Medicted step

To summarize these tests: their purpose is merely to assure
that at least one of the optimization functione is reasonably
linear, a modest requircment for a reasonable perturbation. The
use of non-linearity in the above manner is the first basic prin-
ciple of the control system.
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The second basic princip'e is that of correcting ccnstraint
errors gradually. There are .everal reasons for eliminating
~onst—aint errors by a small amount on each iteration, ather
than by attempting to eliminate the entire error in the first
iteration.

First, w ww¥ing with non ‘inear equations, the large
steps which a.: .23uired to elimiuace the entire constraint error
will frequentl, lie outside the iinear range. Hence, after a set
of time consuming trials ¢f decreasing step-size, the analyst will
ultimately be reduced to the gradual elimination of the errors.

Second, it should be noticed from Equation (43) that of the
control variable perturbation magnitude DP2 an amount equal to
deiLlwwj'l{d¢} is required to provide the desired constraint
changes. If this portion of DP< is too large, the payoff function
Equation (44) will be primarily the r=2»sult of constraint changes
rather than an inherent improvement in the trajectory character-
istics. In this case, there is a danger that the optimization
will degenerate intc a mcce terminal constraint search.

Third, it must be noted that it is possible to introduce
local extremals into a problem by the means of terminal constraints.
This becomes cliar from an elementary example in the ordinary
calculus. Consider the problem of maximizing a iunction z(x,y)
which has a single cptimal valuve as in Figure 28.

Now seek extremal values of z(x,y) stbject to a constraint
i(£,y,2) = 3 (345)

It is clear from diagram that in the particular case
considered, there are two solutions: one at A and one at B,
the global optimum being that at B, Now cunsider the solution of
this problem by the method of steepest descent commencing from
Point C. If achieving the constraint is the dominating influauce
in choosing a step, the solution will tend to traverse a path of
the nature CDA, and, hence, the lower extremal solutioa wi. be
located. On the other hand, if in initially choosing the step-
size, one pays little attention to the constraint, the likelihood

of traversing a path such as CEB and locating the global extremal
is increased.

From this discussion, it ic apparent ..+ there are sound
reasons for nct attempting to eliminate the complete end point
error at each step; accordingly the contrcl system initially
attempts to remove constraint errors of magnitude

{ay} = Acw « {y} (346)

where AC, is a small non-dimensional guantity.

¥

g9



After N iterations, if certain requirements are met, the control
system will be attempting to eliminate an error of

{dy} = N - ACw - {y} = cw{w} (347)

provided N - Acwsl. When N - AC,2>1, the amount of constraint
error to be removed is given by

{ay} = {yp} (348)

Figure 28.—ILocal Extremal Introduced 5y Jonstraint Function

100



This is the second basic principle of the step-size control
system, the gradual removal of constraint errors in order to
emphasize the payoff function role, in the initial iterations of
a descent.

The two princirles of this section are not adequate to insure
convergence. It nas been necessary to add many other logical
tests to the control system; some of these are described below.

Secondary Tests

The two principles outlined above are far from sufficient to
insure convergence to the correct solution. They must be sup-
plemented by many secondary decisions, mainly of an indirect
nature. The more important ones will now be listed, not neces-
sarily in the order in which they occur in the actual control
system. For details of the control system as programmed, refer-
ence must be made to the appropriate flow charts in Reference 2.

Determination of Step-Size Magnitude for First Trial of

Zach Iteration.— The step-size magnitude DP,< used 1n the first
trial of each iteration except the first is automatically based
on the values used in preceding iterations. For the first iter-
ation, an arbitrary value must be specified py the analyst; this
value should be chosen on the large size; the control system will
very quickly determine the correct value by making trial trajec-
tories.

After each iteration in a . attempt to inhibit any tendency
to a gradual decrease in DP2, the control system determines the
trial value from the value finally used on the previous iteration,
DPI%_l using the expression

2 _ 2
DPo = 2DPN_l
provided certain other conditions have been met. These other
conditions are as follows:

(349)

(a) That the value given by Equation (349) is at least
great enough to provide the constraint change being
sought. If it is not, then,

B S RN

That is, DP” is taken as the minimum value which

will provide the constraint changye desired, provided
that this is not greater than 10-4 times the expected
trajectory cut-off, uuless this in turn is a smaller
quantity than that given by Equation (349). The
reasoning behind this test is as follows:
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(b)

{c)

(i) Assume first that the rules for con-
straint changes, to be described in detail
later, are functioning corractly, and,
hence, DP2 should be no less than the

quantity de_]LIwa ~l{ay}.

{ii) In some cases, the constraint changes
may be excessive; in this case as 10-47T
should insure a reasonable size of per-
turbation, the control uses this value
as an upper limit.

(iii) 1If, however, the previous iteration used

a perturbation magnitude DPé_l greater than
10-4T, then the control system uses DPZ_;
as the upper limit on step-size magni-
tude.

The quantity,
. : -1
seae = Too- [t M {ned sy

is the gradient of ¢ with respect to DP2 if the
constraint changes are zero; that is, it is the
measure of how close any trajectory is to the
optimal trajectory naving the same end-points.
Now grad ¢ is usually the difference of two very
large numbers,and thecse numbers are the result
of lengthy numerical computations. In this
situation, small rumerical errors can lead to

the differance between positive and negative re-
sults for the value of grad¢ when a trajectory
approaches the optimal trajectory for a particular
set of end-points. As these may not be the
desired set of end-points and as grad¢ is essen-
tially a positive quantity (see Equation 44), it
must be recognized that negative values of grad¢
merely mean that a trajectory is practically the
optimal one to the current end-points. All that
remains in such a situation is to perturb the end
points towards their desired values. This is
accomplished by setting

oF? = |av] [xw] -1 {a.p}, DR,2 < |av] [Iw]'l {w} (352)

or by following the logic of (a) above if the
inequality is not satisfied.

On occasion, an idiosyncrasy in a particular
trajectory may cause the step-size to become
severely reduced; this will usually be accompanied
by an excessive number of trials. After six or
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(4)

(e)

eight trials, depending on the circumstance,

the control system will force a final trajectory
to be computed. In the next iteration, the
magnitude of the control variable perturbation
DP< for the first trial trajectory will then be
computed by the expression

DP,2 -‘/(npﬁ_l) (DP2_,) (353)

instead of by Equation (349). This value is
used in an attempt to maintain a reasonable
perturbation magnitude should an excessive
number of trials occur.

If sense switch 4 on the IBM 7094 computer
console is depressed, the step-size magnitude
for the first trial of an iteration is auto-
matically given by

pp_% = 10747 (354)

This feature can be used towards the termination
of a calculation as convergence appears complete,
to artificially attempt a large step. It is a
safety device designed to provide assurance that
a false convergence has not occurred; for by
this means, a complete family of step-sizes will
be attempted as the step-size is reduced to an
acceptable level.

Two limits are placed on a trajectory; a time
limit at
t=T . (355)

and an altitude limit at

h = hmin (356)
If time is integrated beyond Tpsx, or the alti-
tude below hmin, then the trajectory integration
is terminated. Should either of these situations
occur on a nominal trajectory, the control system
assumes that the nominal trajectory is unsatis-
factory and terminates the convergence immediately.
If these limits are violated on any trajectory
subsequent to the nominal trajectory computation,
it is assumed that this is the result of a per-
turbation being too great, and another trajectory
is computed with

k = .5 (357)
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at this point, the value of DP2 which caused the

violation of a trajectory limit is saved (DPgave)
and is then used as the nominal value on the

first trial of the next iteration; for the vio-
lation of the trajectory limit may be of a
transient nature, and a major object of the ccntrol

system is to keep the step-size as large as
possible.

Determination of Step-Size Magnitude After First Trial.—
After the first trial, the step-size magnitude 1s basically

controlled by the step-size parameter k, according to the ex-
pression,

pp? = k2.DP20 (358)

There is an exception to this rule when the step-size is "bouncing*
"Bouncing"” means that either a value of DP2 equal to or smaller
than one already demonstrated to be too small or a value of DP2
equal to or greater than one already demonstrated to be too great
is again predicted. Figure 29 demonstrates one way this phen-
omena can arise. Here a value of DP2 has been computed from a
value of the step-size parameter kj;,.; a trial is made and the
extrapolation is made and a value o? k corresponding to point C

is computed. If this value of k is beyond the point

khigh = Zklow (359)

”

c

.—.——.-
- =

Parabolic extrapolation from A
True non-linear behavior
Paraboiic interpolation from B

f(k)

Figure 29.-—Step-Size Bounce Induced by Parabolic Approximation
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The control system will compute a new trial trajectory corres-
ponding to a step-size of khigh' i.e.,

k = khigh (360)
On compieting the trial, the controlling function takes on the
value at B. The parabolic interpolation from this point pre-
dicts a value at L less than klow and without a "bounce test,"
a trial would be taken with

k = klow (361)
and a closed loop established. Accordingly, if a situation of
this nature arises, Equation (360) is overruled,and the step-
size magnitude is determined by a midpoint search

2 2
DP; + DP.
DP2 = _Mé.__!rﬂ (362)

Limits on Dimensionai Travel of Payoff Function.—The step-
size parameter k 1s determined by the first principle described
previously, t2at is control with the most linear of the optimi-
zation functions. This decision is over-ruled if such a step
causes the dimensional travel of any of the optimization func-
tions to become excessive. Constraints are placed on the
dimensional travel of the payoff function in the following
manner:

(a) If the problem at hand is one involving maximization
of the payoff function and

A% 2 ~typy = *aov (363)

(b) If the problem at hand is one involving minimization
of the payoff function and

8¢ < dppy = ppy (364)
The permissable adverse ¢ travel magnitude, ¢ADV’ is
determined by the expression
$N-1 ¢ nax
¢ Aoy ""‘( 0’ "% ) (365)

where ¢n-]1 is the value of tihe payoff function at the termination
of the last iter~tion,and ¢pzx is the greatest value of the
payoff functio ibsolute value obtained at the termination of

any of the previcus iterations.

The adverse ¢ travzl test described above has its basis
in the principle of emphasizing the payoff function behavior.
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Problems are often encountered in which, due to the initial ter-
minal constraint errors, the unconstrained performance, as
measured by the payoff function, is better on the nominal
trajectory than it is on the final optimal trajectory. A prob-
lem of this nature inevitably involves the loss of performance
during the major portion of the descent. Now the greatest
obstacles facing the analyst in applying the Steepest-Descent
method are false convergence and failure to converge in a
reasonable number of cycles. Both these phenomena are inhibited
by the adverse ¢ travel test when performance has to be given

up in order to achieve the end points; Fig 2 30 demonstrates
how the test inhibits false convergence in a problem of this
type. Without the adverse ¢ travel tests, the first M itera-
tions are spent in reducing the constraint error at the expense
of ¢. At that point (A) in the convergence, if all went well,
emphasis would return to the payoff function and the optimal
trajectory obtained at point B. This type of behavior is illus-
trated by the lines OAB. At point B, however, there is a

risk of false convergence and the descent may continue in the
manner of OAC. The adverse ¢ travel test, on the other hand,
will not permit the initial rapid loss of ¢ and convergence with
this test included is far more likely to be of the nature of the
broken line OD.

Again, in a nroblem where the performance must tend to
deteriorate as the constraints improve, a very irregular con-
vergence may result. This is demonstrated in Figure 31; ini-
tially, a decline in performance occurs as the constraints are
improved until the point Aj is reached. at this point emphasis
returns to the payoff function; a set of sceps which improve
performance at the expense of the const.aint are undertaken
until the point B; is reached. Here emphasis returns to the
constraint and the process repeats. The resulting convergence
tends to have the appearance of the lines OA;B;A,B,. . .; the
adverse ¢ travel test inhibits this irregular éeﬁavior and
tends to lead to a convergence of the nature of OC.

It should be noted that without the second part of the
decision of Equation (365), ¢ would be unable to change sign;
if the end points were attainable with ¢ = 0, a false convergence
such as OD woulid result. This provides a simple example of how
an over-restrictive rule in the control system can lead to false
convergence.

Whenever the ¢ travel fails to satisfy the appropriate
inequality of Equations (363) or (364), the parabolic assumption
is applied to compute a value of k that will result in a satis-
factory step by solving the equation

2
- k = &
(4¢ - A0)k° + d¢ .k ADV (366)

k= -0 % \[(m)2 + 4(ad - o). Papy (367)
2(a¢ - a¢)
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Figure 30.—Adverse ¢ Travel Tests Inhibit~ False Convergence
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Figure 31.—Adverse ¢ Travel Test Inhibits Irregular Convexrgence
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The solution must have one positive and one negative root,
provided the calculation is performed only when the adverse
travel is too great, as can be seen from Figure 32. When k has
been computed from Equation (367) it is multiplied by a factor
of .9 in view of the approximations involved so that finally
the acceptable value of k, based on adverse ¢ travel, is given
by

-d¢ :\[{ a®)® + (4® - d¢) ¢ ppy

Ko, = 45 (368)

A¢ - do

Limits on Dimensional Travel of Constraints.-— Rules which
specify the amount of end-point error to be eliminated on each
trajectory have been given previously. Due to the non-linear
nature of the trajectory equations and the necessity of attemp-
ting to take large steps at each iteration, the actual constraint
changes may differ considerably from those askec for. Accordingly
another set of rules which specify acceptable limits on the end-
point travel must be used; it has proven convenient to state
these rules in the form

YBup; @y < AV < Ymp, @Y, ¥ SO (344
Yowp, V3 2 8 2 Vpup Ay, ¥, 20
1

i (370)
The permissable non-dimensional limits on adverse con-
straint travel, V¥ , and favorable constraint travel, V¥ WD
are functions of Eﬁg amount of non-dimensional constrain
error being eliminaied, the number of iterations completed, and
the number of iterations since the particular constrain* error
changed sign. If less than ten iterations have been completed
since the constraint error changed sign then:

Yewp = 1

¢m = 3 > C#’ £ .5 (371)
Vowp = <5

Youp = 2.5, 5 <Cy<1 (372)
Ygyp = -025

If more than ten iteraticons have elapsed since the con-
straint error changed sign, it is assumed that some difrfic._.ty
in meeting the constraint exists. In this case, Vryp and Vg
are based on the number of completed iterationa.

109



Payoff function change

(=)

® Apv

557
o327 Sy
N
’ 0

Parabolic approximation
through A

Non-linear
ciiange

\

to Adverse ¢ Travel

Figure 32.—Application of Parabolic Approximation



WDi
= 0
WBWDi .5, N <2 (374)
%WD. = 1.5
1

36

It has previously been indicated that normally

Cy = NACy (376)

There is an exception to this rule. The exception occurs when
the step-size magnitude on the first trial of an iteration is
less than the amount required to provide the desired constraint
change and when grad¢ is positive. When this condition occurs,
Cy is successively reduced by ACy until the constraint change
is less than the amount the DPZ2 is capable of providing.

With ygyp and y specified, the control system merely
checks in which direction each constraint is travelling and
computes by the now familiar parabolic approximation what values
of k, if any, will cause each constraint to reach the boundary
towards which it is travelling. The method is demonstrated in
Figure 33 for a constraint which must be increased and has moved
in the correct direction.

A .
5 2 s
B Tl
5 &7
g ”’
A v
\ Negative oot 8
Forward dV
Permissible favorable
constraint travel
1 By
C2

¢
Figure 33.—Application of Parabolic Approximation,
Constraint Moving in Desired Direction
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If the trial point is at A, the parabolic approximation must
behave in the manner of AjA;. The solution sought is at A, and
the negative root may be ignored. If the trial is at B, the
approximate solution behaves in the manner of B;B,, and che
point B is sought. If the trial is at C, the curve behaves in
the manner of C;C,, and there is no real value of k which will
produce a point on the forward boundary; in this case, the limit
on k is ignored by setting kypyp = =.

In Figure 34 a constraint which must be increased is con-
sidered; here, however, the motion is adverse. A trial such as
that at point D indicates that the point sought is at D; the
negative solution may be ignored. Similar sketches to those of
Figure 33 and 34 may be drawn for a constraint which must be
decreased.

P
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@ ”
8 oW
;E ‘é\g//
s 2 ¥
= NP
S
k
Permissible adverse
constraint travel _
¥ Backward dyp D
m" v

Figure 34.—Application of rarabolic Appror¥imation,
Constraint Moving in Wrong Direction

Let the value of k which places a constraint at the appro-
priate boundary on its travel be denoted by kyryy. If the solu-
tion is complex, adopt the convention that k¢TVL = », so that

- ~dy X %dy’/)a + 4( ay- ay) Vv

k
L 2(ay - ay)
when 2
kyv, =@ > W +U(AY- Y)Yy < O
(377)
and ay? + W(AY- aW) ¥y, 2 O
(378)
where ¥ =y dy , if the constraint has moved in the wrong
TVL BWD

direction

wFWde , 1f the constraint has moved in the right
direction
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In Equation (377) the smallest positive root must be taken.

Conditions for Ignoring Dimensional Constraint Change Test.__
In some circumstances, the limits on end-point travel are ignored.
For example, if a constraint has been obtained within the accep-
table limits, Yo, which are specified by the analyst for the
particular problem, then its end-point travel ceases to be
monitored unless the constraint:once again drifts outside the
acceptable limits. This decision is made in order to avoid
the possibility of limiting step-size magnitude on the basis of
a constraint which is essentially met, while considerable errors
still remain in other constraints or a significant amount of
performance gain remains.

The limits on constraint travel are also ignored for a
constraint error which is being reduced more rapidly than another
constraint error. This is achieved by creating a measure of
the end point errors at the termination of the nominal trajec-
tory. These errors are denoted by Yprgr- When, after a number
of iterations all the constraint errors have been halved,Yggrpr
is also halved. This process is repeeted until the computed
VERR are less than ypqg;; at this point Ygrr is set equal to YrOL.
Any time a particular end-point error is less than yppp, its
dimensional end point travel will not be tested during the
following iteration.

It should be noted that if the ypQor are zero, a danger of
talse convergence exists; for if the constraints are essentially
satisfied before the greatest performance is obtained, a situ-
ation of the nature of that depicted in Figure 24 exists, and
the limits on constraint travel may inhibit the development of
performance.

It should be noted that whenever the controlling function
(the one with the greatest k basel on linearity) is a constraint,
its end-point travel is always checked, for there is no point
in controlling with a constraint beyond the permissable limits
on its travel, 1If the limits on tiie travel of a controlling
constraint cause the step-size to ‘e less than it would be if
based on linearity and that constr.int is within Yyggrr, then an
attempt to control with the next must linear function is made.
As the limits on the first controlling function travel can then
be ignored, it is possible that a larger step will result from
the use of the second controlling function. The larger of the
two step-sizes obtaired in this manner is then used; if necessary
this process is repeated with the next mosi linear function, etc.

Majority Vote Test.— Only rhose trajectories on which at
least half the optimization functions of interest improve will
be .onsidered satisfactory. The optimization functions of in-
terest are defined as the constraint functions having errors
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greater than their respective YgRr, and the payoff function
provided the number cf optimization functions of interest is
odd or zero.

A trial trajectory which fails to satisfy the majority
vote test is not permitted to lead to the final trajectory of
an iteration (valid step). A valid step which fails to satis-
fy the test is over-ruled by another valid step. In either
case, the new trajectory is computed with a step-size based on
k = .5

Summary.— The control system essentials have been presented;
it may be noted that wherever possible, the payoff function
change is emphasized at the expense of the constraint changes.

Choice of step-size after the first trial is based on both
linearity and dimensional changes. A careful examination of
the various tests will reveal that the step-size parameter is
basically given by the expression

k = Min m(“@"m(k\w “wvr.): kg kﬁ”m)’ Yo’ Wi (379)

¥ >VERR

This value of k must then be checked against the bounce test
and the majority vote test. If

H<k£2.0 (380)

a final trajectory is computed; otherwise, a further trial
trajectory at the appropriate limit is computed.

After a final trajectcry, the majority vote test and the
adverse travel test must both be satisfied; if they are not,
then the final trajectory is recomputed with a step-size deter-
mined by k = .5 or on a computed k¢TVL.

The control system has shown extreme reliability to date
provided only that the integration technique employed is ade~
quate for the problem under consideration. Should a convergence
failure be encountered by an analyst using the program of
References 1 and 2, it is strongly recommended that the first
course of action to follow is a critical examination of the
integration technique and integration step being employed.
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